To be prepared for Test 3, you should be able to:

- Find the derivatives of the six basic trig. Functions
- Know \(\lim_{\theta \to 0} \frac{\sin \theta}{\theta} \) and \(\lim_{\theta \to 0} \frac{\cos \theta - 1}{\theta} \)
- Take derivatives using the Chain Rule (algebraically, numerically, and graphically) in combination with all of the other derivative rules you know.
- Find \(\frac{d}{dx} a^x \)
- Do Implicit Differentiation
- Find \(\frac{d}{dx} \sin^{-1} x, \frac{d}{dx} \cos^{-1} x, \frac{d}{dx} \tan^{-1} x \)
- Find \(\frac{d}{dx} \log_a x, \frac{d}{dx} \ln x \)
- Do Logarithmic Differentiation
- Find the linearization of a function at a point.
- Calculate the differential, \(dy \), of \(f(x) \)
- Use linear approximations and differentials to approximate changes in \(f(x) \), and calculate the error, the relative error, and the percent error of the approximation.
- Do simple related rates problems
- Find the absolute and local extrema of \(f(x) \) (on its domain and on a specified interval)
- Find the critical numbers of \(f(x) \).
- Use the Mean Value Theorem to answer questions
- Determine the intervals on which \(f(x) \) is increasing, decreasing, concave up, and concave down, and locate the local extrema of \(f(x) \) (using the first and second derivative tests).
- Find the vertical and horizontal asymptotes of \(f(x) \).
- Use information above to sketch a good graph of \(f(x) \).

Recommended Review Problems (Start with some odd-numbered problems, and do more if needed):

Any homework problems

Ch. 3 Review
- T/F Quiz (p. 248) #’s 3, 4, 5, 7, 8, 9, 10, 12
- Exercises (p. 248) #’s 1-46, 47ab, 48c, 49-62, 65, 71, 73, 75

Ch. 4 Review
- T/F Quiz (p. 323) #’s 1-11
- Exercises (p. 324) #’s 1-17, 23, 24, 35, 37