College Mathematics

brief guide to scientific calculators
order of operations / rational expressions / parentheses
Most scientific calculators (TI-30, etc.) do basic arithmetic in the following order:
grouping symbols have highest priority, then exponents, then multiplication and division, then addition and subtraction (sometimes known as "Please excuse my dear aunt Sally"). Graphing calculators (TI-83, etc.) generally follow the same logic, but there are some differences. Generally, you should press the [enter] key where the TI-30 uses [=]. If you have questions about your calculator, please ask me.

to calculate	on a TI-30, type	result
$2+3 * 5$	$2[+] 3[\times] 5[=]$	17
$(2+3) * 5$	$[(] 2[+] 3[)][\times] 5[=]$	25
$60 / 6 / 2$	$60[\div] 6[\div] 2[=]$	5
$60 /(6 * 2)$	$60[\div][(] 6[\times] 2[)][=]$	5
$60 / 6 * 2$	$60[\div] 6[\times] 2[=]$	20

Realize that a fraction bar is actually a grouping symbol. Your calculator cannot tell what is grouped above or below the fraction bar unless you use parentheses:

$$
\begin{array}{llc}
9-6 / 3+1 & 9[-] 6[\div] 3[+] 1[=] & 8 \\
\frac{9-6}{3+1} & {[(] 9[-] 6[)][\div][(] 3[+] 1[)][=]} & 0.75
\end{array}
$$

negative numbers / square / square root

to calculate	on a TI-30, type	on a TI-83, type	result
-17	$17[+/-]$	$[(-)] 17[\mathrm{enter}]$	-17
3^{2}	$3\left[\mathrm{x}^{2}\right]$	$3\left[\mathrm{x}^{2}\right][\mathrm{enter}]$	9
$\sqrt{8^{2}+6^{2}}$	$\left.\left[(] 8\left[\mathrm{x}^{2}\right][+] 6\left[\mathrm{x}^{2}\right][)\right] \mid \sqrt{x}\right]$	$[\sqrt{ }]\left[(] 8\left[\mathrm{x}^{2}\right][+] 6\left[\mathrm{x}^{2}\right][)\right]$	10

exponents

to calculate	on a TI-30, type	result
2^{3}	$2\left[y^{x}\right] 3[=]$	8
$200(1.007)^{48}$	$200[\times] 1.007\left[y^{x}\right] 48[=]$	279.54
$200\left(1+\frac{.084}{365}\right)^{4(365)}$	$200[\times][(] 1[+] .084[\div] 365[)]\left[y^{x}\right][(] 4[\times] 365[)][=]$	279.86
$50\left[\frac{1.007^{240}-1}{1.007-1}\right]$	$50[\times]\left[(]\left[(] 1.007\left[y^{x}\right] 240[-] 1[)\right][\div][(] 1.007[-] 1[)][)\right][=]$	
	$30,958.89$	

You can also do this calculation, avoiding parentheses entirely, if you keep track of the order of operations and simplify the denominator yourself:

$$
\begin{aligned}
& 1.007\left[\mathrm{y}^{x}\right] 240[-] 1[=] \\
& {[\div] .007[=]} \\
& {[\times] 50[=]} \\
& 30,958.89
\end{aligned}
$$

scientific notation
Sometimes you will get an answer that is so large or so small that your calculator displays it in scientific notation. For example, try this

to calculate	on a TI-30, type	result
2^{99}	$2\left[\mathrm{y}^{\mathrm{x}}\right] 99[=]$	6.338^{29}

This is an abbreviation for 6.338×10^{29}, or $633,800,000,000,000,000,000,000,000,000$.
memory
If you have need to using the result of a calculation more than once, you may want to store it in memory and recall it whenever you wish. Try this example:

	on a TI-30, type	on a TI-83, type	result
to store	$17[\mathrm{STO}] 3$	17 [STO $>$ [ALPHA] N	
to recall	$[\mathrm{RCL}] 3$		

