College Mathematics

loans

The amount of a loan is the single amount that would have the same future value as the entire series of payments. This is called the present value of the annuity.

Example 1 (solving for the payment):
Suppose you have been approved for a $\$ 9000$ car loan with an interest rate of 7.5%, compounded monthly. If you want to make equal payments at the end of every month to pay off the loan in 4 years, what must be the monthly payment?

Solution:

The future value of the entire series of payments is
$=$ PMT [(1.00625^48-1)/(1.00625-1)]

The future value of the loan amount is $\$ 9000(1.00625)^{\wedge} 48$.

This must be equal to the future value of all the payments:

```
$9000(1.00625)^48 = PMT [ (1.00625^48-1 )/ (1.00625-1 )]
PMT = $9000(1.00625)^48 / [(1.00625^48-1)/0.00625 ]
    = $217.61
```

Your monthly payment will be $\$ 217.61$

Example 2 (solving for the loan amount):
Suppose you can afford to make $\$ 500$ payments at the end of every month toward a house loan. If the annual interest rate is 6%, compounded monthly, and you plan on taking 30 years to pay off the loan, how big a loan can you afford?

Solution:

The future value of the entire series of payments is $\$ 500\left[(1.005)^{\wedge} 359+\ldots+(1.005)^{\wedge} 2+(1.005)^{\wedge} 1+1\right]$
$=\$ 500\left[\left((1.005)^{\wedge} 360-1\right) /(1.005-1)\right]$
$=\$ 502,257.52$

The future value of the loan amount is $\operatorname{PV}(1.005)^{\wedge} 360$.

This must be equal to the future value of all the payments:

```
PV(1.005)^360 = $502,257.52
PV = $502,257.52 / (1.005)^360
    = $83,395.81
```

You can afford a mortgage loan of $\$ 83,395.81$

