You should be able to do the following things:

Given a verbal description of a logical argument, identify the premise(s) and the conclusion. Given a verbal description of a logical argument, decide whether the argument is valid or not. Given a verbal description of a logical argument, decide whether the argument is sound or not.

Know what NOT, AND, OR, IF-THEN, "neither-nor" mean in logic. Explain them in words. Write the truth table for basic statements like "NOT p", "p AND q", "p OR q", "IF p, THEN q".

Write the truth table for compound statements involving combinations of these, including parentheses, like "(p OR q) AND NOT r", "IF (p OR q), THEN NOT (r AND s)", "p OR q OR r OR s OR t OR u", etc.

Check whether two propositions are logically equivalent or not by writing and comparing their truth tables.

Given a statement in "IF p, THEN q" form, write the equivalent form "IF NOT q, THEN NOT p". Know that the original form is not equivalent to the form "IF q, THEN p". Know that the original form is not equivalent to the form "IF NOT p, THEN NOT q".

Given a description of a set subdivided along two different conditions and (four) known values, use a Venn diagram, a two-way table, or the two-way inclusion-exclusion principle to calculate the number of items in any subset.

Given a description of a set subdivided along three different conditions and eight known values, use a three-way table or a Venn diagram to calculate the number of items in any subset.

Know what "at least one", "exactly one", "none" mean in logic and counting. Apply them in situations involving Venn diagrams and/or two-way tables and/or three-way tables.

Understand that per means "for each". Given a description of a rate, express it using "per".

Know that milli- means one-thousandth, micro- means one-millionth, nano- means one-billionth, kilo- means one thousand, mega- means one million, giga- means one billion.

Given equivalents, convert a measurement into an equivalent measurement in different unit(s).

Know that Watt is a unit of power, which is the rate at which energy is used. Understand that 1 Watt-hour is the amount of energy used by a 1 Watt device in 1 hour.