Section 4.6

1. Let \(f(x) = \frac{2x - 3}{5x + 4} \).
 (a) What is the domain? (b) Give the \(x \)-intercept(s), if any. (c) Give the \(y \)-intercept(s), if any. (d) Give the equation(s) of the vertical asymptote(s), if any. (e) Give the equation(s) of the horizontal asymptote(s), if any.

2. Let \(f(x) = \frac{9x^2 - 16}{x^2 - 6x + 9} \).
 (a) What is the domain? (b) Give the \(x \)-intercept(s), if any. (c) Give the \(y \)-intercept(s), if any. (d) Give the equation(s) of the vertical asymptote(s), if any. (e) Give the equation(s) of the horizontal asymptote(s), if any.

3. Let \(f(x) = \frac{3x + 5}{x^2 - 2x - 15} \).
 (a) What is the domain? (b) Give the \(x \)-intercept(s), if any. (c) Give the \(y \)-intercept(s), if any. (d) Give the equation(s) of the vertical asymptote(s), if any. (e) Give the equation(s) of the horizontal asymptote(s), if any.

4. Use transformations of the memorized graph for \(y = \frac{1}{x} \) to graph \(y = -\frac{1}{x} + 2 \) on the coordinate system at the right.

5. Use transformations of the memorized graph for \(y = \frac{1}{x^2} \) to graph \(y = \frac{1}{(x + 2)^2} - 4 \) on the coordinate system at the right.
6. The braking distance (in feet) for a car traveling 50 miles per hour on a wet uphill road is given by the formula
\[D(x) = \frac{2500}{30x + 9}, \]
where \(x \) is the grade (slope) of the road. If the braking distance is 250 feet, what is the grade of the road? Round your answer to the nearest tenth of a percent.

Section 4.7 (Excluding Polynomial Inequalities)

7. Solve for \(x \):
\[\frac{2}{x - 4} + \frac{3}{x + 1} = 5 \]

8. The graph of \(f(x) \) is shown at the right. For what values of \(x \) is \(f(x) \geq 0 \)? Give your answer in interval notation. (Note: All intercepts and asymptotes occur at integers.)

9. Solve for \(x \) and give your answer in interval notation:
\[\frac{x - 3}{x^2 - 1} < 0 \]

10. Solve for \(x \) and give your answer in interval notation:
\[\frac{x^2 - x - 6}{x^2 + 3x - 4} \geq 0 \]

Section 4.8

11. Use laws of exponents to write the following as a single power of \(x \):
\[\sqrt[4]{x} \cdot \frac{3\sqrt{x}}{4\sqrt[3]{x}} \]

12. Solve for \(x \): \(\sqrt{4 - 3x} - 8 = x \)

13. Solve for \(x \): \(\frac{3\sqrt{2x - 5}}{3} + 1 = -3 \)

14. Suppose that the surface area \(S \) of a bird's wings (in square feet) can be modeled by the function \(S(w) = 1.25w^{2/3} \), where \(w \) is the weight of the bird (in pounds). Estimate the weight of a bird with wings having a surface area of 2.5 square feet. Round your answer to the nearest tenth of a pound.

Section 5.1

15. Let \(f(x) = 2x - 3 \) and \(g(x) = 4x + 5 \). Determine each of the following.

(a) \((f + g)(x)\)
(b) \((f - g)(x)\)
(c) \((fg)(x)\)
(d) \((f/g)(x)\)

(e) \((f \circ g)(x)\)
(f) \((g \circ f)(x)\)
(g) \((f + g)(1)\)
(h) \((f \circ g)(-1)\)
16. The graphs of \(f(x) \) and \(g(x) \) are shown at the right. Use the graphs to evaluate each of the following.
 (a) \((f + g)(2)\)
 (b) \((f / g)(-1)\)
 (c) \((f - g)(3)\)
 (d) \((f g)(-2)\)
 (e) \((f \circ g)(1)\)
 (f) \((g \circ f)(-1)\)
 (g) \((g \circ g)(-1)\)

17. Ray recorded a CD of a song he wrote and performs. It cost him $1,500 to have the song recorded and it cost him $2.00 for each CD he had duplicated. He sold the CD’s for $4.00 each.
 (a) What was Ray’s total cost function for recording the CD and having \(x \) copies made?
 (b) What was Ray’s revenue function for the sale of \(x \) copies of the CD?
 (c) What was Ray’s profit function for the sale of \(x \) copies of the CD? (Reminder: Profit = Revenue – Cost)
 (d) If Ray had 1,000 copies of the CD made and sold them all, what was his profit?

Section 5.2

18. The table at the right is a complete representation of the function \(f \).
 \[
 \begin{array}{c|c|c|c|c|c}
 x & -2 & -1 & 0 & 1 & 2 \\
 \hline
 f(x) & 0 & 1 & 2 & 3 & 4 \\
 \end{array}
 \]
 (a) Is \(f \) a one-to-one function? Explain how you determined your answer.
 (b) Does \(f \) have an inverse function? (c) Evaluate \(f^{-1}(3) \), if possible.

19. If \(f(x) = 5x^3 - 4 \), find the symbolic representation (the formula) for \(f^{-1}(x) \).

20. Determine the formula for the inverse function of \(f(x) = \frac{2x - 5}{7} \).

21. The graph of \(y = f(x) \) is shown on the coordinate system at the right.
 (a) Is \(f(x) \) a one-to-one function? Explain how you determined your answer.
 (b) On the same coordinate system, sketch the graph of \(y = f^{-1}(x) \).
 (c) What is the relationship between the graphs of \(y = f(x) \) and \(y = f^{-1}(x) \)?

22. For the function \(f(x) \) shown in Problem 23, determine (a) \(f^{-1}(0) \) and (b) \(f^{-1}(-1) \).

Section 5.3

23. Determine \(C \) and \(a \) so that the function \(f(x) = Ca^x \) satisfies the following conditions:
 \(f(0) = 40 \) and \(f(3) = 5 \)
24. A company offers a college graduate $50,000 for the first year of employment with a guaranteed 6\% raise each year thereafter. Determine a function $f(n)$ that computes the graduate’s salary for the n-th year.

25. The formula for continuously compounded interest is $A = Pe^{rt}$, where A is the final value of the account, P is the principal with which the account was started, r is the interest rate (in decimal form), and t is the number of years. Determine the final value of a savings account started with a deposit of $2,000 if the account earns interest at a rate of 6\% compounded continuously for 12 years. Round your answer to the nearest cent.

26. The formula for interest compounded n times a year is $A = P\left(1 + \frac{r}{n}\right)^{nt}$, where A is the final value of the account, P is the principal with which the account was started, r is the interest rate (in decimal form), n is the number of compounding periods in a year, and t is the number of years. Determine the final value of a savings account started with a deposit of $5,000 if the account earns interest at a rate of 6\% compounded quarterly for 10 years. Round your answer to the nearest cent.

Section 5.4

27. Evaluate each of the following expressions exactly:
 (a) $\log_2 \frac{1}{10}$
 (b) $\log_2 16$
 (c) $\log 100$
 (d) $\log_3 \frac{1}{9}$

28. Determine the domain for each of the following. Give your answers in interval notation.
 (a) $\log(2x - 3)$
 (b) $\ln(x^2 - 9)$

29. Solve for x and round your answer to the three decimal places:
 (a) $e^x + 2 = 29$
 (b) $10^{2x-3} = 7$

30. Solve for x and round your answer to the three decimal places:
 (a) $2\log x + 3 = 8$
 (b) $3\ln(x - 5) = 6$

Section 5.5

31. Use Properties of Logarithms to expand each of the following expressions into as many terms as possible. If possible, write your answer without exponents.
 (a) $\log \frac{3x^5}{4y}$
 (b) $\ln \sqrt[5]{x^2 y^3}$

32. Use Properties of Logarithms to write the following expression as a logarithm of a single expression:
 (a) $2\log x + 4\log y$
 (b) $4\ln x - 2\ln y$
33. Use the Change of Base Formula to approximate the following logarithm to the nearest thousandth:
(a) \(\log_3 100 \)
(b) \(\log_8 32 \)

Answers

1. (a) \(\left\{ x \mid x \neq \frac{-4}{5} \right\} \)
 (b) \(\left(\frac{3}{2}, 0 \right) \)
 (c) \(\left(0, \frac{3}{4} \right) \)
 (d) \(x = \frac{-4}{5} \)
 (e) \(y = \frac{2}{5} \)

2. (a) \(\left\{ x \mid x \neq 3 \right\} \)
 (b) \(\left(\pm \frac{4}{3}, 0 \right) \)
 (c) \(\left(0, -\frac{16}{9} \right) \)
 (d) \(x = 3 \)
 (e) \(y = 9 \)

3. (a) \(\left\{ x \mid x \neq -3, 5 \right\} \)
 (b) \(\left(-\frac{5}{3}, 0 \right) \)
 (c) \(\left(0, -\frac{1}{3} \right) \)
 (d) \(x = -3, x = 5 \)
 (e) \(y = 0 \)

4.

5.

6. \(\frac{1}{30} = \frac{1}{30} \times 100\% = \frac{100}{30} \% = \frac{10}{3} \% = \frac{3}{3} \% \)

7. \(2 \pm \sqrt{6} \)

8. \((-\infty, -3] \cup (-2, 2] \cup (4, \infty) \)

9. \((-\infty, -1) \cup (1, 3) \)

10. \((-\infty, -4) \cup [-2, 1) \cup [3, \infty) \)

11. \(x^{1/12} \)

12. \(-4 \)

13. \(\frac{-59}{2} \)

14. 2.8 pounds

15. (a) \(6x + 2 \) (b) \(-2x - 8 \) (c) \(8x^2 - 2x - 15 \) (d) \(\frac{2x - 3}{4x + 5} \) (e) \(8x + 7 \) (f) \(8x - 7 \) (g) \(8 \) (h) \(-1 \)

16. (a) 1 (b) 0 (c) undefined (d) \(-4 \) (e) \(-3 \) (f) 0 (g) \(-4 \)
17. (a) \(C(x) = 1500 + 2x \) (b) \(R(x) = 4x \) (c) \(P(x) = 2x - 1500 \) (d) $500

18. (a) Yes, because no \(x \) value is repeated as an \(x \) value and no \(y \) value is repeated as a \(y \) value. (b) Yes. (c) 1

19. \(f^{-1}(x) = \frac{\sqrt[3]{x + 4}}{5} \)

20. \(f^{-1}(x) = \frac{7x + 5}{2} \)

21. (a) It is a function because it passes the Vertical Line Test and it is a one-to-one function because it passes the Horizontal Line Test.

(b) The graphs of \(y = f(x) \) and \(y = f^{-1}(x) \) are symmetric to each other about the line \(y = x \).

22. (a) \(-2\) (b) \(-4\)

23. \(f(x) = 40\left(\frac{1}{2}\right)^x \)

24. \(f(n) = 50,000(1.06)^{n-1} \)

25. $4,108.87

26. $9,070.09

27. (a) \(-1\) (b) 4 (c) 2 (d) \(-2\)

28. (a) \(\left[\frac{3}{2}, \infty\right)\) (b) \(\left(-\infty, -3\right) \cup (3, \infty)\)

29. (a) 3.296 (b) 1.923

30. (a) 316.228 (b) 12.389

31. (a) \(\log_3 5 + 5 \log x - \log 4 - \log y \) (b) \(\frac{2}{5} \ln x + \frac{3}{5} \ln y \)

32. (a) \(\log \left(x^2 y^4\right) \) (b) \(\ln \frac{x^4}{y^2} \)

33. (a) 4.192 (b) \(\frac{5}{3} \)