Chemical Exam of Urine - Ketones

- **Ketone Bodies**
 - **Origin**
 - Products of fat catabolism
 - Breakdown of fat into CO2 and water
 - Not normally present in detectable amounts
 - They appear when carbohydrates are not available and the body utilizes fats as an alternative source of energy.

- **Definitions**
 - Ketonuria - ketones in the urine
 - Ketonemia - ketones in the blood
 - Ketosis - disease state, when patient has increased amount of ketones.
 - Acidosis - state when blood pH is decreased, an accumulation of acids; commonly occurs as a result of ketosis
 - Ketoacidosis - blood acidosis as a result of increased levels of ketones.
Chemical Exam of Urine - Ketones

- Three forms:
 - Acetone
 - constitutes 2%
 - Acetone is volatile, & excreted primarily through the lungs
 - Diacetic Acid (Acetoacetic)
 - the first formed
 - both acetone and beta hydroxybutyric acid are produced from diacetic acid.
 - Diacetic acid is the form detected by most ketone test procedures.
 - Makes up 20% of total.
 - Beta hydroxybutyric Acid
 - majority formed
 - although most of the ketones are this form, it is not detected by routine test.
 - Only Hart's test, an old 'wet chemical' test that is designed to detect B-hydroxybutyric acid

Chemical Exam of Urine - Ketones

- Clinical Significance
 - Health - formed in liver and completely metabolized
 - Disease - excessive formation and accumulation
 - Disturbance of carbohydrate metabolism
 - when there is a decrease of carbohydrate metabolism, then
 the body stores of fat must be metabolized to supply energy.
 - As a result of this increased fat metabolism ketones will be
 found in the urine.
 - Low carbohydrate diets (Atkins types)
 - Diabetics not in control

Chemical Exam of Urine - Ketones

- Other conditions
 - Persons exposed to cold / severe exercise
 - Febrile conditions
 - High fat diets / ketogenic diets
 - Starvation / malnutrition
 - Vomiting and diarrhea, esp in children
 - Van Gierke's Disease - glycogen storage disease
 - An error in carbohydrate metabolism, results in limited availability of carbohydrates.
 - Pyloric stenosis (sometimes in babies)
 - Affected infants have prolonged loss of gastric contents
 - resulting in starvation = ketones.
 - But also a frequent loss of the HCl from the stomach means
 loss of HCl - results in overall alkalosis instead.
 - So - while ketosis is most often associated with acidosis, when
 caused by pyloric stenosis - can result in overall alkalosis.
Chemical Exam of Urine - Ketones

- Physiological Effect
 - 2 of the 3 ketones are metabolic acids.
 - Can you name them?

- pH of the blood lowered
 - Normally the blood pH is 7.40,
 - but the presence of increased keto-acids lowers both blood and urine pH. (condition is called ketoacidosis)

- Excessive acid excreted in urine (lowers urine pH)
 - Urine ketones can be found before significant levels can be seen in the blood, increasing the importance of urine screening, especially in emergency situations.

- Toxicity - brain damage by
 - acetoacetic / diacetic acid
 - and acetone

Screening / checking for Ketonuria

- Diabetic Ketonuria
 - Diabetes mellitus
 - Out of control diabetic will have ketones in their blood and urine.
 - Checking for ketones in urine - Provides clue to early diagnosis of ketoacidosis and diabetic coma
 - Pregnant diabetic - fetal death due to ketoacidosis

- Others
 - Monitor a patient who is trying to change from insulin to an oral hypoglycemic agent
 - Ketonuria shows poor response
 - Also, oral agents lose effectiveness if the patient has a current infection.
 - Ketones in the urine would demonstrate that the patient’s oral hypoglycemic medication is not working
Chemical Exam of Urine - Ketones

• Typical urine of the diabetic patient
 • Low pH - from keto acids
 • High specific gravity - the presence of increase glucose
 • High glucose - positive test
 • Pale and maybe somewhat greenish color
 • Ketones - positive test

 (what would you look for in the microscopic?)

Chemical Exam of Urine - Ketones

• Ketone Tests
 • most use nitroprusside
 • which detects diacetic acid and a small amount of acetone,
 • but does not detect β-hydroxybutyric acid.

Chemical Exam of Urine - Ketones

• Acetest - tablet
 • Reagents
 • Sodium nitroprusside
 • Aminoacetic acid (glycine)
 • Disodium phosphate - provides optimal pH
 • Lactose
 • Chemistry
 • Reacts with AA and acetone to give purple color
 • Very sensitive (10 mg/dL in urine)
 • Most sensitive to diacetic acid / acetoacetic acid (10 X)
 • Also can detect acetone (7 X)
 • Not at all sensitive to beta hydroxybutyric acid
 • Can be used for urine, serum, EDTA plasma, or whole blood.
Chemical Exam of Urine - Ketones

- **Urine dipsticks**
 - Reagents - same as Acetest (primarily sodium nitroprusside)
 - Chemistry - similar to Acetest
 - Used for serum or urine

![Chemical Exam of Urine - Ketones Diagram]

Urine ketone: false positive or atypical color

- Highly pigmented urines
- Combination of high specific gravity and a low pH
- Levodopa metabolites
- Sulfhydryl groups
- Phenylketones
- Phthalein compounds
- Positive and questionable results may be confirmed with a tablet test.

Urine ketone: false negative

- Controls solutions that use acetone.
- **Old specimens**
- **Specimens that have been heated.**

General precaution: always test fresh specimens.
Reference Listing

- Please credit those whose work and pictures I have used throughout these presentations.
- Lillian Mundt & Kristy Shanahan, Graff’s Textbook of Urinalysis and Body Fluids, 2nd Ed.
- Susan Strassinger & Marjerie Di Lorenzo, Urinalysis and Body Fluids, 5th Ed.
- Wikipedia, the free encyclopedia
 - www.wikipedia.org