Unit 2; Session 1

Urine Microscopic Examination

Microscopic Examination of Urine

- The Complete Urinalysis
 - Physical properties
 - already covered
 - Chemical analysis
 - in the next unit
 - Microscopic
 - our current focus

Microscopic Examination of Urine

- Urine sediment
 - all of the solid / insoluble materials suspended in the urine
 - Blood cells - Red and White
 - Epithelial cells
 - Casts
 - Bacteria & Yeast parasites
 - Spermatozoa
 - Mucus
 - Crystals & Artifacts
- Least standardized, most time-consuming
Microscopic Examination of Urine

- **Significance of formed elements in the urine**
 - Well performed microscopic exam can provide information nearly equivalent to a biopsy.
 - Ongoing controversy as to when / if to perform the microscopic exam.
- **To qualify for microscopic, the urine must meet specific standards:** based on physical properties or chemical results
 - Color, clarity, blood, protein, nitrite, leukocyte esterase, and possibly glucose
 - Special populations: pregnant women; pediatric, geriatric, diabetic, immunocompromised, renal patients

Microscopic Examination of Urine

- **Clinical and Laboratory Standards Institute (CLSI)**
 - Requested by the physician
 - Laboratory-specified population
 - Any abnormal physical or chemical result
 - Laboratory criteria are programmed into automated instrumentation

Microscopic Examination of Urine

- **Macroscopic Screening & Chemical Sieving**
 - Correlation of findings from physical & chemical analysis with expectations in microscopic.

<table>
<thead>
<tr>
<th>Test</th>
<th>What to look for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color & Clarity</td>
<td></td>
</tr>
<tr>
<td>red, pink / hazy or cloudy</td>
<td>RBCs</td>
</tr>
<tr>
<td>White / hazy or cloudy</td>
<td>WBCs</td>
</tr>
<tr>
<td>Positive nitrite</td>
<td>WBCs / bacteria</td>
</tr>
<tr>
<td>Positive Leukocyte esterase</td>
<td>WBCs, WBC casts, bacteria</td>
</tr>
<tr>
<td>Positive Glucose</td>
<td>yeast</td>
</tr>
</tbody>
</table>
Microscopic Examination of Urine

- **Specimen requirements**
 - **Collection of specimen**
 - Prefer the concentrated first morning specimen, collected = mid-stream, clean catch
 - first morning most concentrated and will be able to demonstrate the most abnormalities.
 - Mid stream, clean catch technique will eliminate fecal & vaginal contamination
 - Container must be clean and free of lint / debris
 - usually disposable plastic, must be sure no soap residue
 - Fresh - tested within 2 hours of voiding, or refrigeration needed.

Microscopic Examination of Urine

- Sources of Variation
 - Collection method
 - Centrifugation time and speed
 - Re-suspension of sediment
 - Type of microscope slide
 - Viscosity of specimen
 - Reporting of the results

Microscopic Examination of Urine

- **Preparation of specimen (standardized)**
 - Mix specimen well
 - Pour specified volume into urine centrifuge tube
 - Not enough specimen? (VARIES - FOLLOW PROTOCOL)
 - If < 1 mL – perform microscopic on unspun sample and note the report form
 - If 1 – 6 ml – spin down entire sample and note on report form
 - If 6-11.5 mL – add saline and account for dilution
Microscopic Examination of Urine

• Preparation of specimen
 • Mix specimen well
 • Pour 12 ml into urine centrifuge tube
 • Centrifuge five minutes, 1200-2000 RPM (speed varies depending on the centrifuge's characteristics)
 • Speed and time should be consistent. The "relative centrifugal force" is important.

Microscopic Examination of Urine

• Pour off supernatant - except last .5-1 mL. have pipettes that assist
• Re-suspend sediment - mix gently, but well. tap, or use pipette provided

Microscopic Examination of Urine

• Preparing to view the sediment
 • Glass slide method:
 • 20 μL
 • 22 x 22 mm glass cover slip
 • Do not overflow cover slip
 • Heavier elements (casts) flow outside
 • Increased chances for variability
Microscopic Examination of Urine

- **Commercial systems**
 - Evaluate sediment in a chamber standardized for given volume and depth field
 - UniSystem - slide on right
 - KOVA System - slide below
 - Count 6 or Count ID
 - all have their ‘own brand’ of tubes, pipettes, stain, slides, etc.
 - Authors also mentions several other ‘all in one-type of systems’
 - Use standardized reporting format consistent with other techs in the institution

- **Sternheimer and Malbin - crystal violet, safranin-O**
 - Sedi-Stain & KOVA stain are commercial preparations with addition of stabilizers to prevent precipitation.
 - Supra-vital stain used to increase visibility of structures.
 - Assists greatly in differentiating renal tubular epithelial cells
 - which will take on an eosinophilic - orange cytoplasm & dark purple nuclei) from transitional epithelial (which are more overall blue)

Enhancement | Purpose
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Toluidine blue</td>
<td>nuclear structure - assists in differentiating WBC from renal epithelial cells</td>
</tr>
<tr>
<td>2% acetic acid</td>
<td>removes interfering RBCs and enhances nuclei of WBC</td>
</tr>
<tr>
<td>Hansel stain</td>
<td>methylene blue and eosin Y stains eosinophilic granules - ID eosinophils</td>
</tr>
<tr>
<td>Lipid stains - Oil Red O, Sudan III</td>
<td>stains triglycerides and neutral fats orange-red to ID lipid containing cells</td>
</tr>
<tr>
<td>Eosin</td>
<td>Stains RBCs, while yeast do not stain</td>
</tr>
<tr>
<td>Prussian blue reaction</td>
<td>makes iron granules blue in color (hemosiderin granules appear yellow until stained</td>
</tr>
<tr>
<td>Gram stain</td>
<td>to assist in ID of gram reaction of bacteria</td>
</tr>
</tbody>
</table>
Microscopic Examination of Urine

• Brightfield binocular microscope
 • Adjustable condenser and iris diaphragm to provide Koehler illumination
 • Parfocal objectives – to keep object in focus when changing magnification
 • Want subdued light
 • Have light source on low setting
 • Lower condenser
 • Closed iris diaphragm.
 • Use filters
 • Continuously focus up and down with fine adjustment.

Microscopic Examination of Urine

• Viewing urine sediment – with other types of microscopes
 • Phase-contrast microscopes
 • ID of translucent elements such as casts
 • Special condenser and objective alter light causing a halo effect around element
 • Polarized light microscopes
 • to help ID crystals, lipids

Microscopic Examination of Urine

• Viewing urine sediment
 • Want subdued light
 • Keep the light’s setting as low as possible.
 • Partially close the iris diaphragm
 • Adjust the condenser - downward
 • Continuously focus up and down with fine adjustment.
Microscopic Examination of Urine

- **Examining the Urine Sediment**
 - **Start on low power objective (10X ocular x 10X objective = 100X)**
 - **Scanning**
 - Examine 10-15 fields using low power (10X).
 - Look for casts, mucus, and squamous epithelial cells and in general getting an overall feel.
 - Use reporting criteria established by the site.
 - In MLT courses - follow ‘Urinalysis Reporting Standardization Guide’ as published in Microscopic lab.
 - **Enumerate**
 - Casts - use low power to enumerate, but switch to high power to aid in identification.
 - **Quantitate**
 - Mucus using semi-quantitative terms.

- **Switch to high power objective (10X ocular x 40X high-dry obj = 400X)**
 - To identify types of casts.
 - **Enumerating**
 - WBCs
 - RBCs
 - Renal epithelial cells
 - **Quantitate**
 - Crystals (including amorphous crystals)
 - Bacteria, yeast & other parasites
 - Other miscellaneous items
 - Follow protocol of the facility.
 - Correlate microscopic with physical and chemical dipstick results.

- **Changes in urine sediment when allowed to stand**
 - Important to keep in mind the changes in microscopic structures that can occur (don’t forget the other chemical changes ie bilirubin, pH, ketones).
 - RBC distorted - crenation, swelling, disintegration.
 - WBC disintegrates in alkaline urine.
 - Cast disintegrates in alkaline urine.
 - Bacterial growth - increased alkalinity.
 - Increased precipitation of crystals, especially amorphous (as the urine cools off the crystals begin to precipitate).