Unit 1 E
Physiology of the Urinary System

Physiology of the Urinary System

• Functions of the kidney
 • Elimination of excess water
 • Elimination of waste products of metabolism, such as Urea & Creatinine
 • Elimination of foreign substances (such as drugs that have been detoxified by the liver)
 • Retention of substances necessary for normal body function (glucose, electrolytes, minerals, amino acids, etc)

• Functions of the kidney, continued
 • Regulation of electrolyte balance and osmotic pressure of body fluids (BP)
 • Maintenance of body acid/base balance
 • Hormone production
 • Erythropoietin - RBC stimulus
 • Renin - long term regulation and maintenance of blood pressure
Physiology of the Urinary System

- Kidney accomplishes these tasks by:
 - Filtering
 - Reabsorbing
 - Secreting
 - Concentrating
- To accomplish these tasks, needed are:
 - Renal blood flow
 - Glomerular filtration
 - Tubular reabsorption
 - Tubular secretion

Urine Formation

- Glomerular filtration
 - @ 120 ml/minute of renal plasma is filtered through the glomeruli
 - (Glomerular filtration rate / GFR - chemistry test)
 - Blood enters glomerular capillary system
 - Very high pressure created by arterioles
 - Special capillaries allowing filtration
 - Selected components of the blood plasma to pass through the semi-permeable membrane into the capsular space of Bowman’s capsule

Urine Formation - Filtration

- Glomerular filtration continued
 - Ultrafiltrate
 - Composition similar to blood plasma
 - Contains substances up to @ 70,000 daltons.
 - Water, glucose, amino acids, urea, creatinine, ammonia, electrolytes - Na, Cl, etc.
 - NOT blood cells, fats, proteins.
 - Recap:
 - GFR - glomerular filtration rate - @ 120 mL/min, varies with age and sex
 - Used to monitor kidney disease progression
 - Ultrafiltrate:
 - Substances - 70,000 daltons
 - No blood cells, fats, higher mol wt. proteins, etc.
Urine Formation

- **Physiology of the Urinary System**
 - Kidney accomplishes these tasks by:
 - Filtering
 - Reabsorbing
 - Secreting
 - Concentrating

- **Anatomy review**
 - Modified blood leaving through efferent arteriole pass through vessels (peritubular capillaries) that participate in reabsorption process.
 - These vessels eventually become the renal vein.

Urine Formation - Reabsorption

- **Selected substances removed during ultrafiltration are returned to circulation.**
 - Those things (small enough to filter) that the body cannot afford to lose.
 - Proximal tubules reabsorb water, sodium chloride, bicarbonate, potassium, calcium, amino acids, phosphate, protein, glucose, and other substances.
 - Varying proportions are reabsorbed
 - proteins and glucose almost completely reabsorbed
 - sodium chloride is only partly reabsorbed
 - no reabsorption of creatinine

Urine Formation - Reabsorption

- **Tubular processing of the glomerular ultrafiltrate**
Urine Formation - Reabsorption

• Both active and passive transport processes are used.

Renal tubular function

• Failure to reabsorb unwanted substances
 • Urea
 • Creatinine
 • phosphates, sulfates, uric acid

• Such substances not actively transported, but some may be passively returned.

Urine Formation - Secretion

• Secretion of unwanted substances
 • drugs, & some waste products

• Acid - base balance through the
 • reabsorption of filtered bicarbonate ion
 • secretion of H+ ions attached to bicarbonate
 • secretion of H+ ions attached to phosphate
 • secretion of H+ ions attached ammonia
Urine Formation - Concentration

- Endocrine influence - hormones affecting excretion/reabsorption of electrolytes and water.

Urine Formation - endocrine influence

- Antidiuretic hormone (ADH) (also known as vasopressin)
 - secreted by the posterior pituitary gland.
 - Controlled by body hydration, ADH regulates absorption of water in the distal portion of the nephron
 - By making the walls of the distal and collecting tubules permeable to water.

Urine Formation - endocrine influence

- Antidiuretic hormone (ADH)
 - insufficient ADH results in diabetes insipidus
 - Effects
 - Excess urine production, increased urine volume
 - Decreased plasma volume
 - Excess results in SIADH
 - Results in
 - high plasma volume
 - low serum osmolarity
 - high urine osmolarity
 - low plasma sodium
 - higher than normal urine sodium.
Urine Formation - Concentration

- Endocrine influence
 - Aldosterone
 - From adrenal cortex
 - Acts on distal and collecting tubules
 - Promotes active reabsorption of sodium from the glomerular filtrate (and concurrent secretion of potassium).
 - Increases water retention
 - Raises blood pressure

Renal Functions

- Hormones produced by the Kidney
 - Erythropoietin / EPO
 - Also called hematopoietin / hemopoietin
 - Produced and released by peritubular capillary endothelial cells in the kidney
 - Stimulates bone marrow to produce and release RBCs

Renal Functions

- Hormones produced by the Kidney
 - Renin
 - Enzyme -like acting substance
 - Released from the juxtaglomerular cells
 - Released in response to decreased blood pressure.
 - Acts on plasma substrate (angiotensinogen) changing it to Angiotensin I. When it passes through the lungs it is then changed into the active form, Angiotension II.
 - Causes dilation of afferent arterioles and vasoconstriction of efferent arteries
 - Promotes reabsorption of sodium in the proximal tubules
 - Promotes secretion of the sodium retaining hormone, aldosterone.
 - (all of which cause increase in BP)
Renal Functions

- Electrolyte balance
 - Sodium & Potassium
 • Renin-angiotensin-aldosterone system (reabsorption of sodium and secretion of potassium)
 • Calcium reabsorbed in proximal tubule under influence of parathyroid hormone (PTH)
 • Magnesium regulation parallels calcium
 • Phosphorus reabsorption in proximal tubule is suppressed by PTH.

- Renal threshold /Threshold substances
 - When plasma concentration of a substance is so high that it can no longer be reabsorbed. The substance will then be detectable in the urine.
 - Glucose - high threshold substance
 • appears in the urine when plasma concentration exceeds about 160 to 180 mg/dl.
 - Other threshold substances:
 • amino acids
 • ascorbic acid
 • creatine
 • potassium
 • sodium chloride
Renal Functions

• **Acid – Base balance**
 • Hydrogen ions are produced as waste from metabolism and are generally secreted.
 • Lungs eliminate volatile respiratory acids
 • Kidneys responsible for non-volatile metabolic acids
 • Keto acids (from ketones)
 • Sulfuric & Uric acid
 • Hydrogen ions
 • Kidneys also capable of removing base substances (bicarbonate), if needed
 • Goal is to maintain overall body pH of 7.40 ± 0.005 (7.35 - 7.45)

• **In metabolic acidosis (↓ pH) blood condition**
 • H+ ions are secreted in exchange for sodium and bicarbonate ions
 • H+ ions are attached to ammonia ions making ammonium (NH3 & NH4+) which is eliminated in exchange for sodium.

• **Alkalosis (↑ pH)**
 • Hydrogen ions conserved
 • Bicarbonate can be excreted, but not often

Exam 1

• Includes identifying anatomy from drawings...