Urinalysis and Body Fluids

Unit 4

Cerebrospinal Fluid

Overview of Body Fluid Analysis

- Laboratory responsibilities
 - Accurate & timely results
 - Source of information
 - Normal values
 - Reliability of results, effects of medication, etc.
 - Proper specimen collection and handling
- Laboratory exam of body fluids
 - Physical characteristics
 - Chemical constituents
 - Morphologic elements
 - Culture for microorganisms
 - Ancillary studies

Cerebrospinal Fluid (CSF)

- Composition and formation
 - CSF is the 3rd major fluid of the body
 - Adult volume 90-150 mL
 - Neonate volume 10-60 mL
Cerebrospinal Fluid (CSF)

- Produced at the Choroid plexus of the 4 ventricles by modified Ependymal cells
 - At rate @20 ml/hr (adults)
 - Med training says @150 ml/day is produced
- CSF flows through the Subarachnoid space
 - Where a volume of 90 – 150 ml is maintained (adults)
- Reabsorbed at the Arachnoid villus / granulation
 - to be eventually reabsorbed into the blood

Cerebrospinal Fluid (CSF)

- Blood Brain Barrier
 - Occurs due to tight fitting endothelial cells that prevent filtration of larger molecules.
 - Controls / restricts / filters blood components
 - Restricts entry of large molecules, cells, etc.
 - Therefore CSF composition is unlike blood's
 - **CSF is NOT an ultrafiltrate

Cerebrospinal Fluid (CSF)

- Blood Brain Barrier
 - Essential to protect the brain
 - Blocks chemicals, harmful substances
 - Antibodies and medications also blocked

 - Tests for those substances normally blocked can indicate level of disruption by diseases: ie meningitis and multiple sclerosis.
Cerebrospinal Fluid (CSF)

- **CSF functions**
 - Supplies nutrients to nervous tissues
 - Removes metabolic wastes
 - Protects / cushions against trauma

Cerebrospinal Fluid (CSF)

- Four major categories of disease
 - Meningeal infections
 - Subarachnoid hemorrhage
 - CNS malignancy
 - Demyelinating disease

Cerebrospinal Fluid (CSF)

- Indications for analysis
 - To confirm diagnosis of meningitis
 - Evaluate for intracranial hemorrhage
 - Diagnose malignancies, leukemia
 - Investigate central nervous system disorders
Cerebrospinal Fluid (CSF)

Specimen collection and handling

- Routinely collected via lumbar puncture between 3rd & 4th, or 4th & 5th lumbar vertebrae under sterile conditions
- Intracranial pressure measurement taken before fluid is withdrawn.

Cerebrospinal Fluid (CSF)

Specimen collection and handling

- Tube 1 - chemistries and serology
- Tube 2 - microbiology cultures
- Tube 3 - hematology
- Testing considered STAT
- Specimen potentially infectious
Cerebrospinal Fluid (CSF)

• **Specimen collection and handling**
 - **If immediate processing not possible**
 - Tube 1 (chem-sero) frozen
 - Tube 2 (micro) room temp
 - Tube 3 (hemo) refrigerated

Cerebrospinal Fluid (CSF)

• **Appearance**
 - **Normal** - Crystal clear, colorless
 - **Descriptive Terms** - Hazy, cloudy, turbid, milky, bloody, xanthrochromic
 - Often are quantitated - slight, moderate, marked, or grossly.
 - Unclear specimens may contain increased lipids, proteins, cells or bacteria. Use precautions.
 - Clots indicate traumatic tap
 - Milky - increased lipids
 - Oily - contaminated with x-ray media

Cerebrospinal Fluid (CSF)

• **Appearance**
 - **Xanthrochromic** - Yellowing discoloration of supernatent (may be pinkish, or orange).
 - Most commonly due to presence of 'old' blood.
 - Other causes include increased bilirubin, carotene, proteins, melanoma
Cerebrospinal Fluid (CSF)

- **Appearance**
 - Clot - indicates increased fibrinogen & usually due to traumatic tap, but may indicate damage to blood-brain barrier. *(see below)*
 - Pellicle formation in refrigerated specimen associated with tubercular meningitis
 - Milky - increased lipids
 - Oily - contaminated with x-ray media

- **Cerebral hemorrhage**
 - Even distribution of blood in the numbered tubes
 - Clot formation possible
 - Xanthrochromic supernatent
 - RBCs must have been in CSF @ 2+ hours
 - D-dimer, fibrin degradation product from hemorrhage site
 - Microscopic presence of erythrophaguses, or siderophaguses, Hemosiderin granules

Cerebrospinal Fluid (CSF) - procedures

- All specimens should be examined microscopically - hematology
- Stat priority, RBC lyse in 1 hour, WBC in 2 hrs. Refrigerate if not able to process immediately.
- Electronic counters generally unusable. Manual count
- No dilution usually required (use saline if needed)
- Standard Neubauer hemacytometer counting chamber
Neubauer hemacytometer / counting chamber

- Formula for calculations - results in # cells / uL
 - Count and record cells from both sides of the chamber.
 - Average the two sides
 - Multiply by dilution factor (if no dilution is made, this number is 1)
 - Divide by number of squares counted X volume of each square
 - Large squares, such as # 1-9 below have volume of 0.1
 - Small squares - in center # 5 have volume of 0.004

\[
\text{ave. } \frac{\# \text{ cells counted} \times \text{dilution}}{\# \text{ squares counted} \times \text{volume of each square}}
\]

Cerebrospinal Fluid (CSF)

- Expected results
 - Normally 0 RBCs/uL regardless of age
- WBCs
 - Adult - up to 5 mononuclear WBCs/uL
 - Newborn - up to 30 mononuclear WBCs/uL
 - Children (1-4) - up to 20 mononuclear /uL
 - Children (5+) - up to 10 mononuclear /uL
 - Increased numbers = Pleocytosis

Cerebrospinal Fluid (CSF)

- WBC counts
 - 3% acetic acid can be used to lyse RBC
 - Methylene blue staining will improve visibility
Cerebrospinal Fluid (CSF)

- Correction of WBC count for traumatic tap contamination.
 - Uses ratio of WBCs to RBCs in blood and compares it to same ratio (WBC/RBC) in CSF
 - If patient’s peripheral cell counts are normal, can subtract 1 WBC for each 700 RBCs counted in CSF.
 - Great chance for considerable error, makes this of little value.

Cerebrospinal Fluid (CSF)

- QC
 - CSF controls
 - Check techniques
 - Check of reagents
 - Check of centrifuges
 - Decontaminate all counting chambers in bleach water for @ 15 minutes. Rinse in water and cleaned again with alcohol.

Cerebrospinal Fluid (CSF)

- CSF Slide Differential
 - Wrights stained smear of concentrated sediment.
 - Cytocentrifuge - places cells on filter/membrane. Increases number of cells to evaluate, however, risk of cell distortion from the centrifugation process.
 - Use of albumin reduces cell distortion
Cerebrospinal Fluid (CSF)

• Count and differentiate 100 nucleated cells.
• Any cell found in peripheral blood may be seen in CSF, other nucleated cells and malignant cells can also be found.
• Entire smear should be evaluated for
 - abnormal cells, inclusions within cells, Clusters, Presence of intracellular organisms
• Normal differential values
 - Adults: 70% lymphs, 30% monos.
 - Children / newborns: monocyte.
• Types of cells
 - Neutrophils – occasionally (with normal count)
 - Macrophages – increase following CVA
 - Ependymal cells, and normal lining cells can also be seen.

Cerebrospinal Fluid (CSF)

• Entire smear should be evaluated for
 - abnormal cells
 - inclusions within cells
 - Clusters
 - Presence of intracellular organisms

Cerebrospinal Fluid (CSF)

Lymphocytes & monocytes / macrophages

Mona / macro, saga and lymph
Cerebrospinal Fluid (CSF)

- **Eosinophils**
 - Often associated with parasitic / fungal infections, allergic reactions including reaction to shunts and other foreign objects.

- **Ependymal cells**
 - Normal cell, unique to CSF
 - Line the ventricles, produce CSF fluid
 - Large cell with distinct round/oval nucleus, sometimes found in sheets

Cerebrospinal Fluid (CSF)

- Suspicious / unclassified or malignant cells are reported as "other" or "unclassified" AND are sent to pathology (as seen below)
- Cytology – send unstained slide to cytology / pathology
 - 1986 CAP CM10 CSF – blasts (appearance similar to peripheral blood, always consult with hematology specialist / pathologist) (see below right)
Cerebrospinal Fluid (CSF)

- Cellular inclusions
 - Erythrophage
 - Siderophage
 - Hematoidin crystals (see below)

Cerebrospinal Fluid (CSF)

- CSF Quality Control
 - Commercial quality control samples available

- Chemistry
 - Blood-brain barrier causes selective filtration
 - Abnormal values
 - from altered permeability
 - Increased production
 - Increased metabolism
Cerebrospinal Fluid (CSF) - protein

- Normal 15 - 45 mg/dL.
- Albumin fraction. If IgG – from damaged B-B, or CNS produced? Can electrophoresis to evaluate oligoclonal / malignant bands.
- Decreased levels not significant
- Increases levels
 - Damaged B-B (as in meningitis or hemorrhage)
 - Production of immunoglobulins within CNS (MS)
 - Degeneration of neural tissue
- Dye-binding methods - preferred
 - Alkaline biuret
 - Coomassie brilliant blue - a blue color produced is proportional to the amount of protein present (Beers Law)

Cerebrospinal Fluid - MS Panel

- **Multiple Sclerosis**
 - Diagnosis is difficult - no one specific test
 - CSF Protein electrophoresis
 - Looking for oligoclonal bands
 - **Myelin Basic Protein**
 - Abnormal protein that indicates demyelination of neuron axons
 - Measurement used to monitor course of disease and effectiveness of treatment
 - IgG levels (both serum and CSF)
 - IgG index = (CSF IgG mg/dL / serum IgG mg/dL) / (CSF Albumin mg/dL / serum albumin g/dL) NV < 0.77
 - Albumin (both serum and CSF)
 - IgG synthesis rate.

Cerebrospinal Fluid (CSF) - glucose

- Selectively transported across blood-brain barrier
- Normal values: 60-70% of blood glucose
- STAT procedure, glycolysis reduces level quickly.
- Procedure performed as for blood specimen
- Decreased levels seen in bacterial & fungal meningitis
 - Hypoglycemia
 - Brain tumors
 - Leukemias
 - Damage to CNS
Cerebrospinal Fluid (CSF)

- **CSF Lactate**
 - Normal values = 11-22 mg/dL
 - Increase as result of hypoxia
 - Bacterial meningitis, Head injury
- **CSF Glutamine**
 - Normal 8-18 mg/dL
 - Increased levels associated with increases in ammonia (toxin)
- **CSF Enzymes**
 - Lactate dehydrogenase (LDH or LD)
 - 5 isoenzyme types: LD1&LD2 are in brain tissue
 - Creatine kinase (CPK or CK)
 - Isoenzyme CK3/ CK-BB from brain tissue
 - Following cardiac arrest, patients with CSF levels <17 mg/dL have favorable outcome.

Differential Diagnosis of Meningitis by Laboratory Results

<table>
<thead>
<tr>
<th>Bacterial</th>
<th>Viral</th>
<th>Tubercular</th>
<th>Fungal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased WBC count</td>
<td>Increased WBC count</td>
<td>Increased WBC count</td>
<td>Increased WBC count</td>
</tr>
<tr>
<td>Neutrophils</td>
<td>Lymph</td>
<td>Lymph & Monos</td>
<td>Lymph & Monos</td>
</tr>
<tr>
<td>Marked ↓ glucose</td>
<td>↓ normal glucose</td>
<td>↓ glucose</td>
<td>Normal to ↓ glucose</td>
</tr>
<tr>
<td>Lactate > 35 mg/dL</td>
<td>Lactate normal</td>
<td>Lactate > 25 mg/dL</td>
<td>Lactate > 25 mg/dL</td>
</tr>
<tr>
<td>+ gram stains</td>
<td>Pellicle formation</td>
<td>+ India ink with Cryptococcus neoformans</td>
<td></td>
</tr>
<tr>
<td>+ bacterial antigen tests</td>
<td></td>
<td>+ immunological test for C. neo.</td>
<td></td>
</tr>
</tbody>
</table>

Cerebrospinal Fluid (CSF)- microbiology

- **Gram stain** – Extremely important for early diagnosis of bacterial meningitis
 - Even when well performed, 10% false negatives occur
 - Use of Cytospin to concentrate specimen increases sensitivity
- **Organisms**
 - **Newborns**
 - E. coli & group B Strep.
 - **Children**
 - Streptococcus pneumoniae
 - Hemophilus influenzae
 - Neisseria meningitidis
 - **Adults**
 - Neisseria meningitidis
 - Streptococcus pneumoniae
 - Staph. aureus (if shunt is present)
 - **Immunocompromised**
 - Cryptococcus neoformans
 - Candida albicans, Coccidioides, or any opportunistic organism

Mixed cells and intracellular bacteria
Cerebrospinal Fluid (CSF)

- India-ink / nigrosin preparation
 - Negative stain to view the encapsulated Cryptococcus neoformans (often AIDS / immunocompromised complication)
 - Instead of stain, can also use dark field microscopy for same effect.
- These direct procedures have @ 25-50% sensitivity
 - Prefer latex agglutination tests, better results

Cerebrospinal Fluid (CSF)

- Serology
 - VDRL (Veneral Disease Research Laboratory)
 - For detection of neurosyphilis
 - On CSF test low sensitivity, but great specificity
 - FTA-Abs also used on CSF, more sensitive, but must prevent blood contamination.

Differential Diagnosis of Meningitis by Laboratory Results

<table>
<thead>
<tr>
<th>Bacterial</th>
<th>Viral</th>
<th>Tubercular</th>
<th>Fungal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased WBC count</td>
<td>Increased WBC count</td>
<td>Increased WBC count</td>
<td>Increased WBC count</td>
</tr>
<tr>
<td>Neutrophils</td>
<td>Lymphs</td>
<td>Lymph & Monos</td>
<td>Lymphs & Monos</td>
</tr>
<tr>
<td>Marked ↑ protein</td>
<td>Mod. ↑ protein</td>
<td>Mod-Marked ↑ protein</td>
<td>Mod-Marked ↑ protein</td>
</tr>
<tr>
<td>Marked ↓ glucose</td>
<td>↔ normal glucose</td>
<td>↓ glucose</td>
<td>Normal to ↓ glucose</td>
</tr>
<tr>
<td>Lactate > 35 mg/dL</td>
<td>Lactate normal</td>
<td>Lactate > 25 mg/dL</td>
<td>Lactate > 25 mg/dL</td>
</tr>
<tr>
<td>+ gram stains</td>
<td>Pellicle formation</td>
<td>+ India ink with Cryptococcus neoformans</td>
<td>+ immunological test for C. neo.</td>
</tr>
</tbody>
</table>
Cerebrospinal Fluid (CSF)

- CSF Quality Control

 - Commercial quality control samples available

- END of CSF