Review Chapter 10, 12, 13, 14, 15, 16

Conceptual Physics, 10e (Hewitt)

Chapter 10

- 23) What prevents satellites such as a space shuttle from falling?
- A) gravity
- B) the absence of air drag
- C) Nothing; they're falling continuously all around the Earth.

Answer: C

- 28) An object is thrown vertically into the air. Because of air resistance, the time for its descent will be
- A) longer than the ascent time.
- B) shorter than the ascent time.
- C) equal to the ascent time.
- D) Not enough information given to say.

Answer: A

- 30) An airplane flies at 40 m/s at an altitude of 50 meters. The pilot drops a heavy package which falls to the ground. Where, approximately, does the package land relative to the plane's new position?
- A) beneath the plane
- B) 400 m behind the plane
- C) 500 m behind the plane
- D) more than 500 m behind the plane
- E) none of these

Answer: A

- 31) A bullet is fired horizontally with an initial velocity of 300 m/s from a tower 20 m high. If air resistance is negligible, the horizontal distance the bullet travels before hitting the ground is about
- A) 200 m.
- B) 300 m.
- C) 400 m.
- D) 500 m.
- E) 600 m.

Answer: E

- 36) The tangential velocity of an Earth satellite is its velocity
- A) parallel to the surface of the Earth.
- B) perpendicular to the surface of the Earth.
- C) attributed to satellites moving in any direction.

Answer: A

- 38) If a satellite's radial velocity is zero at all times, its orbit must be
- A) parabolic.
- B) elliptical.
- C) circular.
- D) geosynchronous.

Answer: C

- 40) What prevents satellites such as the space shuttle from falling?
- A) gravity
- B) centripetal force
- C) centrifugal force
- D) the absence of air drag
- E) Nothing; they are continually falling as they orbit the Earth.

Answer: E

- 41) The circular path of a satellite orbiting the Earth is characterized by a constant
- A) speed.
- B) acceleration.
- C) radial distance.
- D) all of these
- E) none of these

Answer: D

- 42) An Earth satellite is in an elliptical orbit. The satellite travels fastest when it is
- A) nearest the Earth.
- B) farthest from the Earth.
- C) It travels at constant speed everywhere in orbit.

Answer: A

- 43) The fastest moving planet in a solar system is
- A) the smallest planet.
- B) the most massive planet.
- C) the planet nearest the sun.
- D) the planet farthest from the sun.
- E) any planet, for they all move at the same speed. Answer: $\,C\,$
- 57) Minimal orbit speed about the Earth is about 8 km/s. Minimal orbital speed about Jupiter would be
- A) less than 8 km/s. B) more than 8 km/s.
- C) about 8 km/s.
- C) about 8 km/s

Answer: B

- 68) Angular momentum is conserved for a satellite in
- A) circular orbit.
- B) elliptical orbit.
- C) both of these
- D) neither of these

Answer: C

Chapter 12

- 5) Which has the greater density, a lake full of water or a cup full of lake water?
- A) the cup full of lake water
- B) the lake full of lake water
- C) Both have the same density.
- D) It is impossible to tell without knowing the size of the lake.

Answer: C

- 8) If the mass of an object were to double while its volume remains the same, its density would
- A) halve.
- B) double.
- C) stay the same.
- D) become four times as great.

Answer: B

- 10) When weight is applied to the top of a stone arch, all of the stone blocks in the arch undergo
- A) tension.
- B) compression.
- C) expansion.
- D) change of phase.

Answer: B

Figure 12-C

- 11) When a load is placed on the middle of a horizontal beam supported at each end, the bottom part of the beam undergoes
- A) tension.
- B) compression.

Answer: A

- 12) You wish to bolt a sign to a horizontal I-beam supporting a bridge. You will weaken the beam least if you drill the bolt-holes through the
- A) upper flange.
- B) lower flange.
- C) web.
- D) All these will have the same effect.

Answer: C

- 14) Stone slabs are stronger under
- A) tension.
- B) compression.
- C) same strength.

Answer: B

- 15) The strength of a rope depends on its
- A) thickness.
- B) length.
- C) both of these

Answer: A

- 18) A wooden block has a mass of 1000 kg and a volume of 2 cubic meters. What is the block's density?
- A) 100 kg per cubic meter
- B) 200 kg per cubic meter
- C) 500 kg per cubic meter
- D) 1000 kg per cubic meter
- E) none of these

Answer: C

- 21) Which will bounce higher off a hard surface?
- A) a rubber ball
- B) a steel ball
- C) Both bounce the same.

Answer: B

Chapter 13

- 1) Water pressure is greatest against the
- A) top of a submerged object.
- B) bottom of a submerged object.
- C) sides of a submerged object.
- D) is the same against all surfaces
- E) none of these

Answer: B

- 3) The pressure in a liquid depends on liquid
- A) density.
- B) depth.
- C) both of these
- D) neither of these

Answer: C

- 6) The mass of a cubic meter of water is
- A) 1 kg.
- B) 10 kg.
- C) 100 kg.
- D) 1000 kg.
- E) 9800 N.

Answer: D

- 8) The reason that buoyant force acts upward on a submerged object is that
- A) it acts in a direction to oppose gravity.
- B) if it acted downward, nothing would float.
- C) the weight of fluid displaced reacts with an upward force.
- D) upward pressure against the bottom is greater than downward pressure against the top of the submerged object.

Answer: D

- 9) A completely submerged object always displaces its own
- A) volume of fluid.
- B) weight of fluid.
- C) density of fluid.
- D) all of these
- E) none of these

Answer: A

- 10) A fish normally displaces its own
- A) volume of water.
- B) weight of water.
- C) both of these
- D) neither of these

Answer: C

- 13) What is the weight of water displaced by a 100-ton floating ship?
- A) less than 100 tons
- B) 100 tons
- C) more than 100 tons
- D) 100 cubic meters
- E) depends on the ship's shape

Answer: B

- 14) When an object is partly or wholly immersed in a liquid, it is buoyed up
- A) by a force equal to its own weight.
- B) by a force equal to the weight of liquid displaced.
- C) and floats because of Archimedes principle.
- D) but nevertheless sinks.

E) none of these

Answer: B

- 19) When holes are drilled through the wall of a water tower, water will spurt out the greatest horizontal distance from the hole closest to
- A) the bottom of the tower.
- B) the middle of the tower.
- C) the top of the tower.
- D) The horizontal distance will be the same for all holes.

Answer: A

- 24) A rock suspended by a string weighs 5 N out of water and 3 N when submerged. What is the buoyant force on the rock?
- A) 8 N
- B) 5 N
- C) 3 N
- D) 2 N
- E) none of these

Answer: D

- 25) An egg is placed at the bottom of a bowl filled with water. Salt is slowly added to the water until the egg rises and floats. From this experiment, one concludes
- A) calcium in the egg shell is repelled by sodium chloride.
- B) the density of salt water exceeds the density of egg.
- C) buoyant force does not always act upward.
- D) salt sinks to the bottom.

Answer: B

- 27) A block of wood weighing 5 N in air, is difficult fully submerge in a pool of mercury because the buoyant force when fully submerged is
- A) less than 5 N.
- B) 5 N.
- C) more than 5 N.

Answer: C

- 29) Compared to an empty ship, the same ship loaded with styrofoam will float
- A) higher in the water.
- B) lower in the water.
- C) at the same level in the water.

Answer: B

Chapter 14

- 3) Atmospheric molecules do not fly off into outer space because of
- A) their relatively high speeds.
- B) their relatively low densities.
- C) Earth gravitation.
- D) cohesive forces.

Answer: C

- 4) About what percentage of the molecules that make up the atmosphere are below an aircraft that flies at an altitude of 6 kilometers?
- A) 20%
- B) 30%
- C) 40%
- D) 50%
- E) more than 50%

Answer: E

- 5) Atmospheric pressure is caused by the
- A) density of the atmosphere.
- B) weight of the atmosphere.
- C) temperature of the atmosphere.
- D) effect of the sun's energy on the atmosphere.

Answer: B

- 6) What is the approximate mass of a 1-square-centimeter column of air that extends from sea level to the top of the atmosphere?
- A) 1 gram
- B) 1 kilogram
- C) 10 kilograms
- D) 100 kilograms

Answer: B

- 9) As a helium-filled balloon rises in the air, it becomes
- A) bigger.
- B) more dense.
- C) heavier.
- D) all of these
- E) none of these

Answer: A

- 11) A one-ton blimp hovers in the air. The buoyant force acting on it is
- A) zero.
- B) one ton.
- C) less than one ton.
- D) more than one ton.

Answer: B

- 13) In drinking soda or water through a straw, we make use of
- A) capillary action.
- B) surface tension.
- C) atmospheric pressure.

- D) Bernoulli's principle.
- E) none of these

Answer: C

- 16) About how high can water be theoretically lifted by a vacuum pump at sea level?
- A) less than 10.3 m
- B) more than 10.3 m
- C) 10.3 m Answer: C
- 17) The flight of a blimp best illustrates
- A) the principle of Archimedes.
- B) Pascal's principle.
- C) Bernoulli's principle.
- D) Boyle's law.

Answer: A

- 18) Airplane flight best illustrates
- A) Archimedes' principle.
- B) Pascal's principle.
- C) Bernoulli's principle.
- D) Boyle's law.

Answer: C

- 19) The faster a fluid moves, the
- A) greater its internal pressure.
- B) less its internal pressure.
- C) internal pressure is unaffected.

Answer: B

- 26) Consider two mercury barometers, one with twice the cross-sectional area of the other. Neglecting capillarity, mercury in the smaller tube will rise
- A) the same height as in the larger tube.
- B) twice as high as mercury in the larger tube.
- C) four times as high as mercury in the larger tube.
- D) more than four times as high as in the larger tube.
- E) none of these

Answer: A

30) A helium-filled balloon released in the atmosphere will rise until

- A) the pressure inside the balloon equals atmospheric pressure.
- B) atmospheric pressure on the bottom of the balloon equals atmospheric pressure on the top of the balloon.
- C) the balloon and surrounding air have equal densities.
- D) all of these
- E) none of these

Answer: C

- 33) Compared to the buoyant force of the atmosphere on a 1-liter helium-filled balloon, the buoyant force of the atmosphere on a nearby 1-liter solid iron block is
- A) considerably less.
- B) considerably more.

C) the same. Answer: C

Figure 14-A

- 38) The depth to which an inverted drinking glass must be pushed beneath the surface of water so that the volume of enclosed air is squeezed to half is
- A) 76 cm.
- B) 10.3 m.
- C) 14.7 m.
- D) 20.6 m.
- E) 29.4 m.

Answer: B

- 44) In a vacuum, an object has no
- A) buoyant force.
- B) mass.
- C) weight.
- D) temperature.
- E) all of these

Answer: A

- 50) A large block of wood and a smaller block of iron on weighing scales both register the same weight 1 ton. Taking buoyancy of air into account, which has the greater mass?
- A) wood
- B) iron
- C) Both have the same mass.
- D) More information is needed.

Answer: A

Chapter 15

- 1) When you touch a cold piece of ice with your finger, energy flows
- A) from your finger to the ice.
- B) from the ice to your finger.
- C) actually, both ways.

Answer: A

3) Which of the following normally warms up fastest when heat is applied?

- A) water
- B) iron
- C) glass
- D) wood
- E) All of the above choices are equally true.

Answer: B

- 7) The moderate temperatures of islands throughout the world has much to do with water's
- A) poor conductivity.
- B) vast supply of internal energy.
- C) high specific heat.
- D) high evaporation rate.
- E) absorption of solar energy.

Answer: C

- 12) Ice tends to form first at the
- A) surface of bodies of water.
- B) bottom of bodies of water.
- C) surface or bottom depending on the water depth.

Answer: A

- 13) When an iron ring is heated, the hole becomes
- A) smaller.
- B) larger.
- C) neither smaller nor larger.
- D) either smaller or larger, depending on the ring thickness.

Answer: B

- 14) As a piece of metal with a hole in it cools, the diameter of the hole
- A) increases.
- B) decreases.
- C) remains the same.

Answer: B

- 16) When a bimetallic bar made of copper and iron strips is heated, the bar bends toward the iron strip. The reason for this is
- A) iron gets hotter before copper.
- B) copper gets hotter before iron.
- C) copper expands more than iron.
- D) iron expands more than copper.
- E) none of these

Answer: C

- 17) If glass expanded more than mercury, then the column of mercury in a mercury thermometer would rise when the temperature
- A) increases.
- B) decreases.
- C) neither of these

Answer: B

- 24) Consider a sample of water at 0 degrees C. If the temperature is slightly increased, the volume of the water
- A) increases.
- B) decreases.
- C) remains the same.

Answer: B

- 26) During a very cold winter, water pipes sometimes burst. The reason for this is
- A) the ground contracts when colder, pulling pipes
- B) water expands when freezing.
- C) water contracts when freezing.
- D) the thawing process releases pressure on the pipes.
- E) none of these

Answer: B

- 30) Room temperature on the Kelvin scale is about
- A) 100 K.
- B) 200 K.
- C) 300 K.
- D) 400 K.
- E) more than 400 K.

Answer: C

- 33) Some molecules are able to absorb large amounts of energy in the form of internal vibrations and rotations. Materials composed of such molecules have
- A) low specific heats.
- B) high specific heats.
- C) none of the above

Answer: B

- 39) Place a kilogram block of iron at 40 degrees C into a kilogram of water at 20 degrees C and the final temperature of the two becomes
- A) less than 30 degrees C.
- B) at or about 30 degrees C.
- C) more than 30 degrees C.

Answer: A

Figure 15-B

- 42) Consider a metal ring with a gap cut in it. When the ring is heated, the gap
- A) becomes narrower.
- B) becomes wider.
- C) retains its size.

Answer: B

Chapter 16

- 4) Your feet feel warmer on a rug than on your tile floor because your rug
- A) is usually warmer than your tile.
- B) is a better insulator than your tile.
- C) for the same mass has more internal energy than your tile.
- D) all of these
- E) none of these

Answer: B

- 5) Energy transfer by convection is primarily restricted
- A) solids.
- B) liquids.
- C) gases.
- D) fluids.
- E) none of these

Answer: D

- 6) Warm air rises because faster-moving molecules tend to move to regions of less
- A) density and less pressure.
- B) pressure.
- C) density.

Answer: A

- 7) At the same temperature, which move with the greater speed in the air?
- A) very light molecules
- B) heavier molecules
- C) All will have equal average speeds.

Answer: A

- 9) Objects that radiate relatively well,
- A) absorb radiation relatively well.
- B) reflect radiation relatively well.
- C) both of these
- D) neither of these

Answer: A

- 13) Cold water will warm to room temperature faster in
- A) black pot.
- B) silver pot.
- C) depends more on the size of the pots than their color Answer: A
- 14) An object will normally be a net radiator of energy when its temperature is
- A) higher than its surroundings.
- B) lower than its surroundings.
- C) neither of these

Answer: A

15) It is commonly thought that a can of beverage will cool faster in the coldest part of a refrigerator.

Knowledge of Newton's law of cooling

- A) supports this common knowledge.
- B) shows this common knowledge is false.
- C) supports or contradicts this common knowledge.

Answer: A

- 17) Which body glows with electromagnetic waves?
- A) both the Sun and the Earth
- B) only the Sun
- C) only the Earth
- D) neither the Sun or the Earth

Answer: A

- 19) The planet Earth loses heat mainly by
- A) conduction.
- B) convection.
- C) radiation.
- D) all of these

Answer: C

- 22) If you double the pressure of an ideal gas while keeping the temperature constant, the average kinetic energy of the molecules
- A) is doubled.
- B) increases by more than twice.
- C) increases by less than twice.
- D) remains unchanged.

Answer: D

- 28) Newton's law of cooling applies to objects that are
- A) cooling.
- B) heating.
- C) both of these
- D) none of these

Answer: C

- 30) A Thermos bottle has double glass walls with silver coating on the glass surfaces that face one another. The silver coating reduces the energy that is transferred by
- A) conduction.
- B) convection.
- C) radiation.
- D) friction.
- E) none of these

Answer: C

- 33) If a poor absorber of radiation were a good emitter, its temperature would be
- A) less than its surroundings.
- B) more than its surroundings.
- C) the same as its surroundings.

Answer: A