
Chapter 4

Motion in Two and Three 

Dimensions
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Motion in Two and Three Dimensions

• Displacement, Velocity and Speed

• Relative Motion

• Projectile Motion

• Circular Motion
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Particle Displacement
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Vector Simulation



MFMcGraw - PHY 2425 Chap_04H - 2D & 3D - Revised 1/3/2012 5

Relative Displacement

Relative 

Displacement 

Vector

Position Vector

Position Vector
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Average Velocity

� �

�

avg

2 1

∆r ∆r
v = =

∆t t - t
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Average Velocity

ˆ ˆ ˆ ˆ

ˆ ˆ

� � � �

�

�

2 1 2 2 1 1
avg

2 1 2 1 2 1

2 1 2 1
avg

2 1

∆r ∆r r - r (x i + y j) - (x i + y j)
v = = = =

∆t t - t t - t t - t

(x - x )i +(y - y )j
v =

t - t
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Instantaneous Velocity Vector

→

�

�

∆t 0

∆r
v(t) = lim

∆t

There is not enough 

information presented here 

to actually calculate the 

instantaneous velocity. This 

is meant only to 

demonstrate the process.  
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Instantaneous Velocity Vector

ˆ ˆ ˆ ˆ
�

�

x y

2 2

x y

y-1

x

dx dy
v(t) = i + j = v i + v j

dt dt

v(t) = v(t) = v + v

v
Θ = tan ( )

v

Instantaneous velocity

Magnitude of the velocity

Direction of the velocity
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Sailboat Velocity

Ques: 

Find the magnitude and 

direction of the average 

velocity if the time 

interval  is 120s?
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Inverse Tangent Problem

The principle branch 

inverse tangent has a 

range of -90o to +90o

Blindly using a 

calculator to compute 

a tan-1 will lead to 

errors.
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Relative Motion
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Relative Motion

P

C

G

� � �

p/G p/C C/Gv = v + v

p p C
= ×

G C G
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Relative Motion

Assume the man throws a ball straight up in the air.

• What trajectory does he see?

• What trajectory does an observer on the ground see?
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Acceleration Vectors

→

�

�

� �

�

avg

∆t 0

∆v
a =

∆t

∆v dv
a(t) = lim =

∆t dt

ˆˆ ˆ

ˆˆ ˆ

�

�

x y z

x y z

v = v i + v j + v k

a = a i + a j + a k

Where:

Average acceleration

Instantaneous acceleration
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Acceleration Vector

�

� f i

avg

f i

v - v∆v
a = =

∆t t - t

�

� 4 2
3avg

4 2

v - v∆v
a = =

∆t t - t

When the direction of a is 

opposite of v, we refer to it 

as a deceleration.
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2-D Projectile Motion

The approach to 2-D 

projectile problems is to 

resolve the velocity vector 

into horizontal and vertical 

components.

The vertical component is 

affected by gravity.

The horizontal component is 

unchanged.
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2-D Projectile Motion

The trajectory of a 2-D 

projectile is a parabola.

The horizontal lines demonstrate 

that the vertical motion of the 

balls are identical in both cases.

The vertical spacing is 

increasing due to the 

acceleration of the vertical 

velocity.

The horizontal spacing of the 

yellow ball is constant.
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2-D Projectile Motion Y vs X
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2-D Projectile Motion Y vs T

Vo = 24.5 m/s @ 36.9o

Voy = 14.7m/s   Vox = 19.6m/s

1
2

1
2

oy

ox

v 14.7
t = = = 1.5s

g 9.8

T = 2t = 2× 1.5 = 3.0s

Range = v T = 19.6 × 3.0 = 58.8m
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Launched from a Height

Origin at the beginning of 

the motion. Positive 

direction up.

Accel due to gravity pointed 

down (-y direction). 

Final vertical position lower 

than starting position.
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Tracing the Negative Solution

The mathematics describe a parabola. It extends backward 

and forward in time. This problem starts at t = 0. The 

negative solutions are not relavent to this problem.
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Projectile Trajectories

Trajectories with angles that are complimentary (add to 90o) 

have identical ranges.

2

oy

0

v
R = sin(2Θ )

g
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Projectile Trajectories
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Projectile Motion in Vector Form

ˆ ˆ

ˆ ˆ

ˆ

�

�

� �

x y

x y

a = 0;a = -g

a = a i + a j

a = 0i +(-g)j

a = -gj = g

This notation is problematic because 

it hides the minus sign in the notation. 

Never do this.

g is always a scalar and its value is 

9.8 m/s2

Associate the sign with the direction 

and display it explicitly.

ˆ

ˆ

� �

�

a = -gj = g

a = -gj
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The Hunter-Monkey Problem

ˆ

ˆ

� �

�

� � � � � �

� � � � �

� �

� � �

� �

21
d do 2

21
m 2

d m d do m mo

do d m do mo

d m

do do mo

do mo

∆r = v t - gt j

∆r = - gt j

∆r - ∆r = (r - r ) - (r - r )

v t = (r - r ) - (r - r )

(r - r ) = 0

v t = -(r - r )

v t = r

Collision condition
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The Pendulum

A simple pendulum is constructed by attaching a 

mass to a thin rod or a light string.  We will also 

assume that the amplitude of the oscillations is 

small.
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Pendulum Motion
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Pendulum Motion

This vector analysis shows that 

the average acceleration is in 

the same direction as ∆V.

In terms of understanding the 

dynamics of the motion of the 

pendulum this is not the most 

productive pathway.
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Pendulum Motion

Knowing the net acceleration 

vector acting on the pendulum 

is interesting. It describes the 

motion of the pendulum but 

this is not the path toward 

solving the problem of 

pendulum motion.
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The pendulum is best 

described using polar 

coordinates. 

The origin is at the pivot 

point. The coordinates are 

(r, φ). The r-coordinate 

points from the origin 

along the rod. The φ-

coordinate is perpendicualr 

to the rod and is positive in 

the counterclock wise 

direction.
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Circular Motion

∆v points towards the 

center of the circular 

pathway.

Circular pathway

� �

� �

r(t) = r(t +∆t)

v(t) = v(t +∆t)
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Satellite Motion

Satellite motion is an 

example of circular 

motion but it is actually 

free fall
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Tangential Acceleration

Tangential acceleration (at) is parallel to V

The acceleration perpendicular to V is the 

centripetal acceleration (ac).

The tangential 

acceleration can only 

change the magnitude 

of V.

The centripetal 

acceleration can only 

change the direction 

of V.
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Projectile Problem

Ques: Where does it land?
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Projectile Problem

oy o ox o

21
oy 2

2

oy

2

oy oy

+

v = v sinΘ;   v = v cosΘ

y = -200 = v t - gt

gt - 2v t - 400 = 0

2v ± (2v ) - 4g(-400)
t =

2g

t = 5.30 ±8.31

t = 11.61s
+

ox

0

Range = v × t

Range = 60cos(60 )× 11.61

Range = 349.8m
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A 3-Dot Projectile Problem

Problem analysis: The horizontal velocity is reversed 

when the ball strikes the wall. Forget the wall, solve the 

problem and fold the solution back, at the wall, later.

Actual motion Unreflected  motion

Ques:

(a.) Where does it hit the ground?

(b.) Time to hit wall?

(c.) Where does it hit wall?

(d.) Air time after hitting wall?
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A 3-Dot Projectile Problem

0

o
mv = 14.0  at Θ = 45

s
1

2

1
2

oy

max avg

wall

ox

v 10
t = = = 1.0s

g 10

10
y = v t = × 1.0 = 5.0m

2

4.0 4.0
∆t = = = 0.4s

v 10

(b.) Time to hit the wall is

wall∆t = 0.4s
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A 3-Dot Projectile Problem
(c.) Where does it hit the wall? 

Ans: Y coordinate value at t = 0.4s

21
oy 2

hit

21
hit 2

hit

∆y(t) = v t - gt

y (t = 0.4) =∆y(t = 0.4)+ 2.0

y = 10(0.4) - 10(0.4) + 2.0

y = 5.2m
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A 3-Dot Projectile Problem
(d.) Airtime after hitting the wall? 

Ans: Total time of unreflected path - 0.4s

 

21
o oy 2

2

2

2

+

y = y + v t - gt

0 = 2 + 10t - 5t

5t - 10t - 2 = 0

10 ± 10 - 4(5)(-2)
t =

10

t = 2.18s

Airtime after wall = 2.18 - 0.4 = 1.78s

Total air time
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A 3-Dot Projectile Problem
(a.) Where does it hit the ground? 

Ans: x = vox * (Air time after wall hit), measured from the wall 

to the left.

x = 10× 1.78 = 17.8m
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Extra Slides
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Apply Newton’s 2nd 

Law to the pendulum 

bob.

2

sin

cos 0
r

F mg ma

v
F T mg m

r

φφ φ

φ

= − =

= − = =

∑

∑

If we assume that φ <<1 rad, then sin φ ≈ φ and cos φ ≈1, the angular 

frequency of oscillations is then: 

L

g
=ω

The period of oscillations is
g

L
T π

ω

π
2

2
==

sin

sin

( / )sin

( / )

F mg ma mL

mg mL

g L

g L

φφ φ α

φ α

α φ

α φ

= − = =

− =

= −

= −

∑
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Example (text problem 10.60): A clock has a pendulum that 

performs one full swing every 1.0 sec.  The object at the end of the  

string weighs 10.0 N.  

What is the length of the pendulum?

( )( )
m 250

4

s 01m/s 89

4
L

2

2

22

2

2

.
..gT

g

L
T

===

=

ππ

π

Solving for L:
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The gravitational potential energy of a pendulum is 

U = mgy.  

Taking y = 0 at the lowest point of the swing, show that y = L(1-cosθ).

θ

L

y=0

L

Lcosθ

)cos1( θ−= Ly


