Chapter 4

Motion 1n Two and Three
Dimensions



Motion 1n Two and Three Dimensions

Displacement, Velocity and Speed

Relative Motion

Projectile Motion

Circular Motion
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Particle Displacement
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Vector Simulation

IR| 26.4 | ©| 654 | Rx|l 11| Ry 24

Clear All
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Relative Displacement

Relative
Displacement
Vector

[Position Vector
pz at tz
\EPosition Vectorj
O X
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Average Velocity

y . Ar Ar

Vavg -
At t, -t

Plattl
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Instantaneous Velocity Vector

y| The tangent to the 50) = i Ar
curve at Py is by definition V(t ) = lm
the direction of v at P; A0 At

There is not enough
information presented here
to actually calculate the
instantaneous velocity. This
i1s meant only to
demonstrate the process.
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Instantaneous Velocity Vector

Instantaneous velocity
dx~ dy ~
v(t)——l +—y]—vz+v J
dt dt
Magnitude of the velocity

i) = v(t)= Jv,” +v,

Direction of the velocity

y
O=tan' ()
Ny

X
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Sailboat Velocity

Ques:

Find the magnitude and
direction of the average

220 |- (110, 218) velocity if the time
interval 1s 120s?

Y, M

Ay

210 |-
_______________________ (130, 205)
Ax
200 | ‘ ' N
100 110 120 130 X, m
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(i " = ETI . - o UI. ‘]1‘}

where

_ Ax 110m — 130 m :

Ovav = At 5 120 s — sldonmys
) _ﬁ_ 218111—205m_0108 /s
“vav A4 120 s i el
SO

v, =| —(0.167 m/s)i + (0.108 m/s)j

—_—

v =\ (v, )+ @ )2=]0199 m/s

uvav

ETU ayv
tanf = —
IT'!. av
)
Uyav 0.108 m/s
e=tan"——=fan™'— — = —33.0°+180° =
U, v —0.167 m/s
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Inverse Tangent Problem

The principle branch
inverse tangent has a et

L — iy —

range of -90° to +90° arceot () TN

Blindly using a

calculator to compute
a tan'! will lead to

CITOrIS.
tanf = _.
S0
syt Uy a e 0.108 m/s e e Vi
= : - tan™’ = —33.0°+ 180° = Vi
—0.167 m/s ’
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Relative Motion
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Relative Motion

_ : B
MJJJJE -:ﬂ.:ﬂ:f\:\:)\ﬁ\:;\:
(a)

Assume the man throws a ball straight up 1n the air.
* What trajectory does he see?

* What trajectory does an observer on the ground see?
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Acceleration Vectors

AV |
a,, = —— Average acceleration
At
a(t)= lim ﬂ — d_v Instantaneous acceleration
At—=0 At dt
Where:

- 2 A A
V=vi+v j+vk
— N A A
a=a.d+a,j+ak
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Acceleration Vector

to ] —
— AV Vf - Vi
a = — =
avg
At 1, -1,
tl @
ﬁ B AV 7R
Javg —
fz @ E;2 At t4 = t2
Uy
s ® v When the direction of a is
t, @ f 0 1 I ds opposite of v, we refer to it
ts @ as a deceleration.
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2-D Projectile Motion

The approach to 2-D
projectile problems is to
resolve the velocity vector
into horizontal and vertical
components.

The vertical component 1s
affected by gravity.

(X0, Yo)

The horizontal component 18
unchanged.
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2-D Projectile Motion

The trajectory of a 2-D
projectile 1s a parabola.

The horizontal lines demonstrate
that the vertical motion of the
balls are 1identical in both cases.

The vertical spacing 1s
increasing due to the
acceleration of the vertical
velocity.

® The horizontal spacing of the
yellow ball 1s constant.

F
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2-D Projectile Motion Y vs X

A

D = Vg, R Range
P Impact point

A

'oni
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2-D Projectile Motion Y vs T

V. =245m/s @ 36.9°

Yy, m
V,, =147m/s V, =19.6m/s
\%
(= te IR s
10 | /, N\ \\ 2 g 9 8
/ . T=21,=2x15=30s
/ . Range=v, T =19.6x3.0=58.8m
5 B \\
| | \'\':"“‘--‘:1
1 2 3 t, s
| | |
19.6 39.2 588 x,m
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Launched from a Height

Yy, m A
Origin at the beginning of

the motion. Positive
N direction up.

xrm Accel due to gravity pointed
down (-y direction).

Final vertical position lower
than starting position.

~100 I W
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Tracing the Negative Solution

—3.24s I 77 6.30 s
L ! I VA ! \\[ ! ! R
~4 -3 2 -1 /0 1 2 3\ 4 5 6 7 s
() (as 1] EEmeeEE ..

The mathematics describe a parabola. It extends backward
and forward in time. This problem starts at t = 0. The
negative solutions are not relavent to this problem.

MFMcGraw - PHY 2425 Chap_04H - 2D & 3D - Revised 1/3/2012 23



Projectile Trajectories

Y, m
30

25

20
15

30

V
R =

Trajectories with angles that are complimentary (add to 90°)
have 1dentical ranges.
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Projectile Trajectories

45° trajectory If the initial and final
elevations were the same,
the 45° trajectory would
have the greater range

In]_tl a]_ ._ __,,.;_-;;-;:—, ‘-\\\\\? _______ /

elevation

Flatter
trajectory
parabola

. Final
‘® elevation
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Projectile Motion in Vector Form

This notation 1s problematic because

a, = 0;a y — 8 it hides the minus sign 1n the notation.
N A A Never do this.
a=ald+a,j
R N g 1s always a scalar and 1ts value 1s
a=01 + (-2)j 9.8 m/s?
G=- c_ 3 Associate the sign with the direction
&5 =8 and display it explicitly.
~ ’?
a = =0
’?

a=-gj
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The Hunter-Monkey Problem
ATy = Vgt - %gtzjl?
Ar, = -%gt%}
A7y - A7, = (T - Ty, ) - (1, - T, )
Vol =(Ty =1, )= (Tgy = 1y )

r -7 )= Collision condition _.
(rd rm ) _ 0 'Udgot

‘_;dot = -(;:do - ?mo)

Vdot — rmo
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The Pendulum

A simple pendulum is constructed by attaching a
mass to a thin rod or a light string. We will also

assume that the amplitude of the oscillations is
small.
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Pendulum Motion
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Pendulum Motion

0
b t7 . .
w This vector analysis shows that
1 by v . . .
TS~ = 7 the average acceleration 18 1n
the same direction as AV.

In terms of understanding the
= dynamics of the motion of the

Uy . ’:' . .
AT az pendulum this 1s not the most
(b) productive pathway.
. AU
5
= =3
<t 7 |4 -
U3 ag
© (o)
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Pendulum Motion

Knowing the net acceleration

vector acting on the pendulum

1s interesting. It describes the P
motion of the pendulum but /N
this 1s not the path toward ;N
solving the problem of / \
pendulum motion.
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The pendulum is best
described using polar
coordinates.

The origin is at the pivot
point. The coordinates are
(r, ¢). The r-coordinate
points from the origin
along the rod. The ¢-
coordinate 1s perpendicualr
to the rod and is positive in
the counterclock wise
direction.
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Circular Motion

A1) = |F(t +41) |
V(1) = [V(t +41) |

5(1‘ +At)  Av points towards the
center of the circular
pathway.

%ﬁculm’ pathwaﬂ
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Satellite Motion

Satellite motion is an
example of circular
motion but it 1s actually
free fall
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Tangential Acceleration

Tangential acceleration (a,) 1s parallel to V

The acceleration perpendicular to V 1s the
centripetal acceleration (a,).

The tangential
acceleration can only
change the magnitude
of V.

The centripetal
acceleration can only
change the direction
of V.
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Projectile Problem

Ques: Where does 1t land?

_J r% ~
: .
%
\
\
N\
'\\j
\

i ) \
I %.
|
1 \‘bz
| %
| ) Y
i \
| )
I N
1 A Y
| N

200 m | \
1 \
| =
: \
@ N

i Range =7 it
: \f'xh:

v___ 1 A1
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Projectile Problem

V,, =V, 8in@; v, =v,cos®

y=-200 = Vol - %gﬁ \:)0_601“/3
gt -2v,t-400=0 .

v, E\(2v,, )] -4g(-400) ="

l'_ Range =7
2g i

t=530+831

t"=11.61s

Range=v xt"
Range = 60cos(60° )x 11.61
Range = 349.8m
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A 3-Dot Projectile Problem

Problem analysis: The horizontal velocity is reversed
when the ball strikes the wall. Forget the wall, solve the
problem and fold the solution back, at the wall, later.

- G D @D on on o

10m/s

10 m/s

20m

>
¢

4.0 m
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Unreflected motion

Ques:

(a.) Where does it hit the ground?
(b.) Time to hit wall?

(c.) Where does it hit wall?

(d.) Air time after hitting wall?
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A 3-Dot Projectile Problem

0 1, =t 2 20 g0
—_ m — = — = /.
v, =14.0"/ at © = 45 =TT
10
ymax = Vavgt% - 7)( ]0 = 50m
4. 4.
Atwall = 0 — 0 = 0.4s
v. 10
o= W T ~——.. .
Actual motion Unreflected motion
/ 10m/s
om/s i (b.) Time to hit the wall 1s
T At = 0.4s
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A 3-Dot Projectile Problem

(c.) Where does it hit the wall?
Ans: Y coordinate value at t = 0.4s

Ay(t)=v,t- 58t

v, (t=0.4)=Ay(t = 0.4) + 2.0
Ve = 10(0.4) - %]0(0.4)2 + 2.0
y,, =J5.2m

= 6]

Unreflected motion
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A 3-Dot Projectile Problem

(d.) Airtime after hitting the wall?
Ans: Total time of unreflected path - 0.4s

Y=Y, +V,t-4gt’

0=2+10t-5¢
5t°-10t-2=0
_10 107 - 4(5)(-2)
o- 77 it S = . 10
/ o t" = 2.18s Total air time
o I Airtime after wall =2.18-0.4 = 1.78s

MFMcGraw - PHY 2425 Chap_04H - 2D & 3D - Revised 1/3/2012 41



A 3-Dot Projectile Problem

(a.) Where does it hit the ground?

Ans: x =v__* (A1r time after wall hit), measured from the wall
to the left.

x=10x1.78=17.8m

@ ’ W . | ®

Actual motion  _~

7
10m/s

10 m/s I

Unreflected motion

2.0m

l

4.0m

MFMcGraw - PHY 2425 Chap_04H - 2D & 3D - Revised 1/3/2012 4?2



MFMcGraw - PHY 2425

Extra Slides

Chap_04H - 2D & 3D - Revised 1/3/2012

43



Apply Newton's 2 2 Fo =g sin g =mas
Law to the pendulum 2

bob. ZFr=T—mgcos¢:m7:()

If we assume that ¢ <<1 rad, then sin ¢ = ¢ and cos ¢ =1, the angular
frequency of oscillations 1s then:
ZF¢ =—mg sin @ = may = mLa

—mg sin@ =mlLo

a=—(g/L)sing W= %
o=—(g/L)p
. e 27 L
The period of oscillations is I = — =2z \/:
8
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Example (text problem 10.60): A clock has a pendulum that
performs one full swing every 1.0 sec. The object at the end of the
string weighs 10.0 N.

What 1s the length of the pendulum?

T:27z\/Z
8

_gT* (98m/s?)10s)
Solving for L: L= A’ e =0.25m
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The gravitational potential energy of a pendulum is
U = mgy.
Taking y = O at the lowest point of the swing, show that y = L(1-cos0).

[.cosO

V.

y:
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