Chapter 6

Applications of Newton’s Laws



Applications of Newton’s Laws

* Friction

* Drag Forces

* Motion Along a Curved Path
* The Center of Mass
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Microscopic Surface Area

The microscopic area of contact 1s proportional to the

normal force.

The normal force 1s the same 1n both of the above orientations.
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Microscopic Surface Area

* When one flat surface rests on another it 1s only the
high points of each surface that are actually in
physical contact.

* The actual physical contact area can be less than 1%

* This has important consequences for heat ransfer in
a vacuum.
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Polished Steel Surface

10 um The vertical scale is expanded 10x relative to the horizontal
scale.

The diameter of a human hair 1s on average 100um.
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Computer Graphic of Nickel Probe on
Gold Substrate

Gold atoms adhere to the nickel probe after contact.
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This 1s a microscopic example of the adhesion that contributes
to the force of frition
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Static and Kinetic Friction

f
f smax — ALLSP n
f SMax bo-eoocme e >
,,;r“"//f; ’/ f = HMFn
/ F \fs:Fapp
Papp

Static friction has a range of values up to a maximum
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Frictional Coefficients
Tahle b-1

Materials L Moy
Steel on steel 0.7 0.6
Brass on steel 0.5 0.4
Copper on cast iron 1.1 0.3
Glass on glass 0.9 0.4
Teflon on Teflon 0.04 0.04
Teflon on steel 0.04 0.04
Rubber on concrete (dry) 1.0 0.80
Rubber on concrete (wet) 0.30 0.25
Waxed ski on snow (0°C) 0.10 0.05
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Rolling Friction
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Rolling Friction

The tire will adhere to the road to some extent. The
peeling away of the tire from the road 1s the source of
rolling friction

0.01 <u, < 0.02 Tiresonconcrete
0.001< u, <0.002 Steel wheels on a steel rail
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Finding p. with Tan0

;

f, =u mgcos6 = mgsin0

_ mgsinf _ sin6

U, = = tan0

mgcost  cos0
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Is This Analysis Realistic?
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Force Diagram for - Is It Realistic?

* Part of T, the vertical component,
is offsetting the weight of the sled
and reducing the size of the
normal force.

* The horizontal component of T

\ appears larger than the frictional
T force f.

* The unbalanced force in the x-
direction causes an acceleration of

the sled. Can old Dad keep the
tension constant?
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With Friction - All Set to Slide

Find p, and the acceleration

u, =0.54
m, =7kg
m, =5 kg
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All Set to Slide means t_ = ™
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Static friction

T 2. F =-umg+mg=(m+m)a
—u;mg+mg=0
g
u ="-2_071
, m 7
+X
Block 2 Dynamic friction

~Hmg+mg=(m+m)a
:%_ﬂkmg:1.0§
m +m,

a
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The Toboggan Problem 1s the Milk Carton
Problem

Except we didn’t want the milk carton to travel
with the table cloth but we do want the children to
travel with the toboggan.
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The Runaway Buggy

Questions: What is the minimum stopping distance, D?

What 1s the force exerted on the buggy?

There 1s only friction between the skates and the ice while the buggy slides
with no friction
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The Runaway Buggy
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Two masses loosely coupled together. Only the
adult’s skates experience friction.

Treated as one mass for inertial purposes

Treated as separate masses for normal force
and friction considerations.
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The Runaway Buggy - The Buggy Alone
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Two masses loosely coupled together. Only the
adult’s skates experience friction.

Treated as one mass for inertial purposes

Treated as separate masses for normal force
and friction considerations.
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The Runaway Buggy - A Neater Solution

MFMcGraw - PHY 2425

Jo =N, =umzg
ZFX =-fk = (ma + m)a

-um g =(m +ma

_ -’ukma
a = 8
ma+m
L, m
FYB=m|a|= kmg
I+ —
m

a
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The Runaway Buggy - Stopping Distance

Let D be the stopping distance. Since we have velocities,
acceleration and a distance we choose the following:

2 .2
v, =v, +2adx

0=v§+2aD
v’ m )\ v
D=—"=|1+ ¢
2a [ maJZukg
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The Runaway Buggy Example

D,

m

[0

ng/my = 0.3

mg/ my = 1.0~

20 40 60 80
) e
vy, m*/s*

TAKING IT FURTHER The minimum value of D is proportional to 02 and inversely pro-
portional to u, . Figure 5-14 shows the stopping distance D versus initial velocity squared for
values of m,/m, equal to 0.1, 0.3, and 1.0, with w, = 0.5. Note that the larger the mass ratio
g/, the greater the distance D needed to stop for a given initial velocity. This is akin to
braking to a stop in a car that is pulling a trailer that does not have its own brakes. The mass
of the trailer increases the stopping distance for a given speed.
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Air Resistance
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Ai1r Resistance

When the drag force due to
air resistance equals the force
due to gravity the net force on
the falling object 1s zero

There 1s no more acceleration.

The velocity stays constant
from that point on. This 1s
referred to as the terminal
velocity.
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Ai1r Resistance

The force of air resistance 1s proportional to a power of the
velocity of the falling object.
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Ai1r Resistance Models

Linear Model Quadratic Model
F(v)=bv F(v)=1CpAv’

_ 2 _
ZFy=mg-bv=0 ZFy—mg—%CpAv =0

N y=|2ms |
b CpA

where p is the density of the medium through which the object falls,
A 1s the cross sectional area of the object, and C is a constant known
as the drag coefficient and is related to the shape and texture of an

object.
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Ai1r Resistance

Vertical Position
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The free fall curve has a term proportional to t>. With air
resistance the acceleration goes to zero. Its distance curve 1s
proportional to t.
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Air Resistance Time Constant

The time constant represents the
characteristic time interval in the
problem. This is the size of the time
interval over which important event in the
problem take place.

It takes a time interval about three (3)
time constants in length for the velocity of
the filter to reach 95% of terminal
velocity. This time is indicated by the first
vertical line in the Distance and Velocity
graphs.

The second vertical line represents the
total fall time of the filter.

The interval between these two lines is
the time period available for making
measurements of the terminal velocity.

Velocity (m/s)
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Air Resistance - Velocity vs

Time Graph

Velocity (m/s)
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Movement Along a Curved Path
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Movement Along a Curved Path

The derivation shows that
the centripetal acceleration
1S

a =

C

2
v
r

If there 1s circular motion
then the acceleration has
this form.
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Relationships for Circular Motion

v 1s the linear (tangential)

~ V2 velocity (m/s).
T 7 r 1s the radius of the motion
w=27xf = 2T_7[ f 1s the frequency (rev/s)
T 1s the period of the
motion (S)
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Centripetal Force

ZF,, = F,, +mg = ma,

FPWzmar_mg

2
.
przm[_'g]
r
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ZFrzFPW+mg=ma,, ZFrszw'ngmar
F

2
2
V _ Y
Fppy =m| —-g Fpy =m r+g
r
+7’
Fpy
mg
Fpyy
mg
+r
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Roller Coaster
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Conical Pendulum
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Conical Pendulum

ZFy = TcosO -mg =0

=18
cost
v2
ZFx = Tsin = ma, = m—
- r
+X 2
— mg V
m sinf = m—
8 cost r
2
gtant) = v
r

v = \/rgtant
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Banked Tracks
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Banked Track - No Friction

v =40 km/h

/
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Banked Track - No Friction

The component of the
normal force along the x-
axis 1s the centripetal
force. This 1s F sin0.

F_ 1s equal to mg/cos0.

X F sinO = mgsin0/cos0
2
i mgtant
r
V2
tant = —
rg

The same results as the conical pendulum
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Flat Tracks
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Flat Track - With Friction

In a flat track situation
the driver relys on
friction between his tires
and the track to stay on
the curve.

For some reason the
author 1gnores his center
of mass obsession on a

problem where 1t might
Where should r be measured? be useful

Inner tires, outer tires, center of
mass?
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Flat Track - With Friction

+
Y 2mr  2a(45.7 m)
U= "= =1 18.9m/s
. [ 152 s i
F_ . 1
v (18.9m/s) :
— a,=— = = | 7.81 m/s?
f : " (45.7 m) 8l m/s
S Max /-
+7 a, = 0
. df

'he acceleration is 7.81 m/s” in the centripetal direction.

Require: 1 complete loop
in 15.2s without skidding
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Flat Track - With Friction

+y
F,
f S MmMaxXx

mg

+7

Require: 1 complete loop
in 15.2s without skidding
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>F = mag
i y
F—mg=0 so F =mg

d]d“L-I -Jl..:u'.llhlf\ . IU_',,I".” = HHII'I{!Q

2F = ma

2
. i : t
.-fhjlhl.\; UL ( i3 r ) ; j.‘-il'l'h'l"k = M

yLEL R 02
Mg = 1 by :

z.r: (I 8.9 I'I"lff'i}j

s re (45.7 m)(9.81 m/s?)
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Center of Mass Motion
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The Center of Mass

The center of mass follows a parabolic path.

MFMcGraw - PHY 2425 Chap_0O6H-More Newton-Revised 1/11/2012

46



The Center of Mass

chm = ”IIXI T mZXZ

I PP, 99

cm M

3
2

)
=
=

The CM 1s a mass weighted displacement
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The Center of Mass

:=- d »
. M m ;
" om 2
————é%—} ———————————— e € —— 3---- +x
*1=0 X 9

e d >
] 1
S m.
i 1 cm g
- < —————— } —————— S R R € —— y---- +x
X 2
x cm 2

For unequal masses the CM is closer to the larger
mass.
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Problems
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The Sliding Block Problem

What is the scale reading while the block is sliding?

The forces don’t depend on the velocity.
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The Sliding Block Problem

The center of mass o= g = g aa = (s Rl
approach i1s unnecessar : | '
.pp C e, Y F = [ml e 4 (ml 2 B A

since the incline 1sn’t n 27¢ 2/ emy

moving. M. = mya,, + o,

The inclined problem is (my + my)a.,, = ma,, +0

analyzed with a non-rotated 211 g )

coordinate system. W o Y

Then an acceleration result ¢ a, = —a,sinf, where a, = gsind
from a rotated system is a, = —(gsind) sing ¢ 5int0

pulled in. A component of
the result is then taken to {14
get the desired projection.
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The Sliding Block Problem

m i

a g sin()
i, m, + n.

'rII."IH 1f
Jull: ,

In the end the simplicity of I, = On, +m)g + (m, + ni,)a_
the situation 1s obscured. (m, + my)g — m,gsin?0 = [m,(1 = sin®A) + m, g

(a’-’flt'u:«‘"?f} om,)g
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The Sliding Block Problem

The scale reading 1s just
the normal force of both
blocks. How much of their
weight 1s directed straight
down?

For m, it is the entire

(; weight m, g. For m, 1t is
just the vertical projection
of m,gcos0 which is

m, g ﬂ) m,gcos*0

F = (m]cos2 ¢9+m2)g

MFMcGraw - PHY 2425 Chap_0O6H-More Newton-Revised 1/11/2012 53



MFMcGraw - PHY 2425

Extra Slides
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CHARACTERISTICS OF PARTICLES AND PARTICLE DISPERSOIDS
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