Chapter 6

Applications of Newton's Laws

Applications of Newton's Laws

- Friction
- Drag Forces
- Motion Along a Curved Path
- The Center of Mass

Microscopic Surface Area

The microscopic area of contact is proportional to the normal force.

The normal force is the same in both of the above orientations.

Microscopic Surface Area

- When one flat surface rests on another it is only the high points of each surface that are actually in physical contact.
- The actual physical contact area can be less than 1%
- This has important consequences for heat ransfer in a vacuum.

Polished Steel Surface

$83 \mu \mathrm{~m}$

The diameter of a human hair is on average $100 \mu \mathrm{~m}$.

Computer Graphic of Nickel Probe on Gold Substrate

Gold atoms adhere to the nickel probe after contact.

This is a microscopic example of the adhesion that contributes to the force of frition

Static and Kinetic Friction

Static friction has a range of values up to a maximum

Frictional Coefficients

Table 5-1 Approximate Values of Frictional Coefificients

Materials	μ_{s}	μ_{k}
Steel on steel	0.7	0.6
Brass on steel	0.5	0.4
Copper on cast iron	1.1	0.3
Glass on glass	0.9	0.4
Teflon on Teflon	0.04	0.04
Teflon on steel	0.04	0.04
Rubber on concrete (dry)	1.0	0.80
Rubber on concrete (wet)	0.30	0.25
Waxed ski on snow $\left(0^{\circ} \mathrm{C}\right)$	0.10	0.05

Rolling Friction

Rolling Friction

The tire will adhere to the road to some extent. The peeling away of the tire from the road is the source of rolling friction
$0.01 \leq \mu_{r} \leq 0.02 \quad$ Tires on concrete
$0.001 \leq \mu_{r} \leq 0.002 \quad$ Steel wheels on a steel rail

Finding μ_{s} with Tan θ

Is This Analysis Realistic?

Force Diagram for - Is It Realistic?

- Part of T, the vertical component, is offsetting the weight of the sled and reducing the size of the normal force.
- The horizontal component of T appears larger than the frictional force f.
- The unbalanced force in the xdirection causes an acceleration of the sled. Can old Dad keep the tension constant?

With Friction - All Set to Slide

Find μ_{s} and the acceleration

$$
\begin{aligned}
& \mu_{\mathrm{k}}=0.54 \\
& \mathrm{~m}_{1}=7 \mathrm{~kg} \\
& \mathrm{~m}_{2}=5 \mathrm{~kg}
\end{aligned}
$$

All Set to Slide means $f_{s}=f_{s}^{\max }$

Block 1

Block 2

Static friction

$$
\begin{aligned}
& \sum F_{x}=-\mu_{s} m_{1} g+m_{2} g=\left(m_{1}+m_{2}\right) a \\
& -\mu_{s} m_{1} g+m_{2} g=0 \\
& \mu_{s}=\frac{m_{2}}{m_{1}}=\frac{5}{7}=0.71
\end{aligned}
$$

Dynamic friction

$$
\begin{aligned}
& -\mu_{k} m_{1} g+m_{2} g=\left(m_{1}+m_{2}\right) a \\
& a=\frac{m_{2}-\mu_{k} m_{1}}{m_{1}+m_{2}} g=1.0 \frac{m}{s^{2}}
\end{aligned}
$$

The Toboggan Problem is the Milk Carton Problem

Except we didn't want the milk carton to travel with the table cloth but we do want the children to travel with the toboggan.

The Runaway Buggy

Questions: What is the minimum stopping distance, D?
What is the force exerted on the buggy?

There is only friction between the skates and the ice while the buggy slides with no friction

Two masses loosely coupled together. Only the adult's skates experience friction.

Treated as one mass for inertial purposes
Treated as separate masses for normal force and friction considerations.

The Runaway Buggy - The Buggy Alone

Two masses loosely coupled together. Only the adult's skates experience friction.

Treated as one mass for inertial purposes
Treated as separate masses for normal force and friction considerations.

The Runaway Buggy - A Neater Solution

$$
\begin{aligned}
& f_{k}=\mu_{k} N_{a}=\mu_{k} m_{a} g \\
& \sum F_{x}=-f_{k}=\left(m_{a}+m\right) a \\
& -\mu_{k} m_{a} g=\left(m_{a}+m\right) a \\
& a=\frac{-\mu_{k} m_{a}}{m_{a}+m} g
\end{aligned}
$$

$$
F_{Y B}=m|a|=\frac{\mu_{k} m}{1+\frac{m}{m_{a}}} g
$$

The Runaway Buggy - Stopping Distance

Let D be the stopping distance. Since we have velocities, acceleration and a distance we choose the following:

$$
\begin{aligned}
& v_{f}^{2}=v_{o}^{2}+2 a \Delta x \\
& 0=v_{o}^{2}+2 a D \\
& D=\frac{-v_{o}^{2}}{2 a}=\left(1+\frac{m}{m_{a}}\right) \frac{v_{o}^{2}}{2 \mu_{k} g}
\end{aligned}
$$

The Runaway Buggy Example

TAKING IT FURTHER The minimum value of D is proportional to v_{0}^{2} and inversely proportional to μ_{k}. Figure 5-14 shows the stopping distance D versus initial velocity squared for values of $m_{\mathrm{B}} / m_{\mathrm{Y}}$ equal to $0.1,0.3$, and 1.0 , with $\mu_{\mathrm{k}}=0.5$. Note that the larger the mass ratio $m_{\mathrm{B}} / m_{\gamma^{\prime}}$ the greater the distance D needed to stop for a given initial velocity. This is akin to braking to a stop in a car that is pulling a trailer that does not have its own brakes. The mass of the trailer increases the stopping distance for a given speed.

Air Resistance

Air Resistance

> When the drag force due to air resistance equals the force due to gravity the net force on the falling object is zero

There is no more acceleration.
The velocity stays constant from that point on. This is referred to as the terminal velocity.

Air Resistance

The force of air resistance is proportional to a power of the velocity of the falling object.

Air Resistance Models

Linear Model

$$
\begin{gathered}
F(v)=b v \\
\sum F_{y}=m g-b v=0 \\
v=\frac{m g}{b}
\end{gathered}
$$

Quadratic Model

$$
\begin{gathered}
F(v)=\frac{1}{2} C \rho A v^{2} \\
\sum F_{y}=m g-\frac{1}{2} C \rho A v^{2}=0 \\
v=\left(\frac{2 m g}{C \rho A}\right)^{\frac{1}{2}}
\end{gathered}
$$

where ρ is the density of the medium through which the object falls, A is the cross sectional area of the object, and C is a constant known as the drag coefficient and is related to the shape and texture of an object.

Air Resistance

The free fall curve has a term proportional to t^{2}. With air resistance the acceleration goes to zero. Its distance curve is proportional to t.

Air Resistance Time Constant

- The time constant represents the characteristic time interval in the problem. This is the size of the time interval over which important event in the problem take place.
- It takes a time interval about three (3) time constants in length for the velocity of the filter to reach 95% of terminal velocity. This time is indicated by the first vertical line in the Distance and Velocity graphs.
- The second vertical line represents the total fall time of the filter.
- The interval between these two lines is the time period available for making measurements of the terminal velocity.

Air Resistance - Velocity vs Time Graph

Movement Along a Curved Path

Movement Along a Curved Path

The derivation shows that the centripetal acceleration is

$$
a_{c}=\frac{v^{2}}{r}
$$

If there is circular motion then the acceleration has this form.

Relationships for Circular Motion

$$
\begin{array}{ll}
a_{c}=\frac{v^{2}}{r} & \begin{array}{l}
\mathrm{v} \text { is the linear (tangential) } \\
\text { velocity }(\mathrm{m} / \mathrm{s}) .
\end{array} \\
\omega=2 \pi f=\frac{2 \pi}{T} & \begin{array}{l}
\mathrm{r} \text { is the radius of the motion } \\
\mathrm{f} \text { is the frequency (rev/s) } \\
\begin{array}{l}
\mathrm{T} \text { is the period of the } \\
\text { motion }(\mathrm{s})
\end{array}
\end{array}
\end{array}
$$

Centripetal Force

$$
\begin{aligned}
& \sum F_{r}=F_{P W}+m g=m a_{r} \\
& F_{P W}=m a_{r}-m g \\
& F_{P W}=m\left(\frac{v^{2}}{r}-g\right)
\end{aligned}
$$

$$
\begin{array}{ll}
\sum F_{r}=F_{P W}+m g=m a_{r} & \sum F_{r}=F_{P W}-m g=m a_{r} \\
F_{P W}=m a_{r}-m g & F_{P W}=m a_{r}+m g \\
F_{P W}=m\left(\frac{v^{2}}{r}-g\right) & F_{P W}=m\left(\frac{v^{2}}{r}+g\right)
\end{array}
$$

Roller Coaster

Conical Pendulum

Conical Pendulum

$$
\begin{aligned}
& \sum F_{y}=T \cos \theta-m g=0 \\
& T=\frac{m g}{\cos \theta} \\
& \sum F_{x}=T \sin \theta=m a_{x}=m \frac{v^{2}}{r} \\
& \frac{m g}{\cos \theta} \sin \theta=m \frac{v^{2}}{r} \\
& \operatorname{gtan} \theta=\frac{v^{2}}{r} \\
& v=\sqrt{r g \tan \theta}
\end{aligned}
$$

Banked Tracks

Banked Track - No Friction

Banked Track - No Friction

The component of the normal force along the x axis is the centripetal force. This is $\mathrm{F}_{\mathrm{n}} \sin \theta$.
F_{n} is equal to $\mathrm{mg} / \cos \theta$.

$$
\begin{gathered}
\mathrm{F}_{\mathrm{n}} \sin \theta=m g \sin \theta / \cos \theta \\
\frac{m v^{2}}{r}=m g \tan \theta \\
\tan \theta=\frac{v^{2}}{r g}
\end{gathered}
$$

The same results as the conical pendulum

Flat Tracks

Flat Track - With Friction

Where should r be measured?

In a flat track situation the driver relys on friction between his tires and the track to stay on the curve.

For some reason the author ignores his center of mass obsession on a problem where it might be useful mass?

Flat Track - With Friction

Require: 1 complete loop
in 15.2 s without skidding

Flat Track - With Friction

$$
\begin{aligned}
& \sum F_{y}=m a_{y} \\
& F_{\mathrm{n}}-m g=0 \text { so } F_{\mathrm{n}}=m g \\
& \text { and } f_{\mathrm{smax}}=\mu_{\mathrm{s}} F_{\mathrm{n}}=\mu_{\mathrm{s}} m g \\
& \sum F_{\mathrm{r}}=m a_{\mathrm{r}} \\
& -f_{\mathrm{s} \max }=m\left(-\frac{v^{2}}{r}\right) \Rightarrow f_{\mathrm{s} \max }=m \frac{v^{2}}{r} \\
& \mu_{\mathrm{s}} m g=m \frac{v^{2}}{r} \Rightarrow \mu_{\mathrm{s}} g=\frac{v^{2}}{r} \\
& \mu_{\mathrm{s}}=\frac{v^{2}}{r g}=\frac{(18.9 \mathrm{~m} / \mathrm{s})^{2}}{(45.7 \mathrm{~m})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}=0.796
\end{aligned}
$$

Require: 1 complete loop in 15.2 s without skidding

Center of Mass Motion

The Center of Mass

The center of mass follows a parabolic path.

The Center of Mass

$$
\begin{aligned}
& M x_{c m}=m_{1} x_{1}+m_{2} x_{2} \\
& x_{c m}=\frac{m_{1}}{M} x_{1}+\frac{m_{2}}{M} x_{2}
\end{aligned}
$$

The CM is a mass weighted displacement

The Center of Mass

For equal masses the CM is mid way between them.

For unequal masses the CM is closer to the larger mass.

Problems

The Sliding Block Problem

What is the scale reading while the block is sliding?
The forces don't depend on the velocity.

The Sliding Block Problem

The center of mass approach is unnecessary since the incline isn't moving.
The inclined problem is analyzed with a non-rotated coordinate system.

$$
\begin{aligned}
& F_{\mathrm{n}}-m_{1} g-m_{2} g=M a_{\mathrm{cm} y}=\left(m_{1}+m_{2}\right) a_{\mathrm{cm} y} \\
& F_{\mathrm{n}}=\left(m_{1}+m_{2}\right) g+\left(m_{1}+m_{2}\right) a_{\mathrm{cm} y} \\
& M a_{\mathrm{cm} y}=m_{1} a_{1 y}+m_{2} a_{2 y} \\
& \left(m_{1}+m_{2}\right) a_{\mathrm{cmy}}=m_{1} a_{1 y}+0 \\
& a_{\mathrm{cm} y}=\frac{m_{1}}{m_{1}+m_{2}} a_{1 y}
\end{aligned}
$$

Then an acceleration result from a rotated system is pulled in. A component of
so $a_{1 y}=-a_{1} \sin \theta$, where $a_{1}=g \sin \theta$
$a_{1 y}=-(g \sin \theta) \sin \theta=-g \sin ^{2} \theta$

The Sliding Block Problem

$$
a_{\mathrm{cmy}}=\frac{m_{1}}{m_{1}+m_{2}} a_{1 y}=-\frac{m_{1}}{m_{1}+m_{2}} g \sin ^{2} \theta
$$

In the end the simplicity of the situation is obscured.

$$
\begin{aligned}
F_{\mathrm{n}} & =\left(m_{1}+m_{2}\right) g+\left(m_{1}+m_{2}\right) a_{\mathrm{cm} y} \\
& =\left(m_{1}+m_{2}\right) g-m_{1} g \sin ^{2} \theta=\left[m_{1}\left(1-\sin ^{2} \theta\right)+m_{2}\right] g \\
& =\left(m_{1} \cos ^{2} \theta+m_{2}\right) g
\end{aligned}
$$

The Sliding Block Problem

The scale reading is just the normal force of both blocks. How much of their weight is directed straight down?

For m_{2} it is the entire weight $\mathrm{m}_{2} \mathrm{~g}$. For m_{1} it is just the vertical projection of $m_{1} g \cos \theta$ which is $\mathrm{m}_{1} \mathrm{~g} \cos ^{2} \theta$

$$
F_{n}=\left(m_{1} \cos ^{2} \theta+m_{2}\right) g
$$

Extra Slides

