Chapter 11

Angular Momentum

Angular Momentum

- The Vector Nature of Rotation
- Torque and Angular Momentum
- Conservation of Angular Momentum

The Vector Nature of Rotation

- All of our angular quantities θ, ω and α are vectors.
- Their directions are along the axis of rotation.
- Until now we had been dealing with just the scalar nature of these quantities and now we will study their vector characteristics.

The Vector Nature of Rotation

In rotation the direction of the vectors can be determined by using the right-hand rule

The Right-Hand Rule

Curl the fingers of your right hand so that they curl in the direction a point on the object moves, and your thumb will point in the direction of the angular momentum.

Angular Momentum is also an example of a vector cross product

The Vector Nature of Rotation

The figure is
illustrating the creation of a torque (τ) (twisting force) on a disk by the application of a tangential force F .

It also obey a righthand rule

The vector cross product is a mathematical statement of the right-hand rule.

The Vector Cross Product

The Cross Product by Components

$$
\begin{aligned}
\boldsymbol{A} \times \boldsymbol{B} & =\text { vector } \\
& (\boldsymbol{A} \times \boldsymbol{B})_{z}=A_{x} B_{y}-A_{y} B_{x} \\
& (\boldsymbol{A} \times \boldsymbol{B})_{x}=A_{y} B_{z}-A_{z} B_{y} \\
& (\boldsymbol{A} \times \boldsymbol{B})_{y}=A_{z} B_{x}-A_{x} B_{z}
\end{aligned}
$$

Since A and B are in the $\mathrm{x}-\mathrm{y}$ plane A x B is along the z -axis.

$$
\boldsymbol{A} \times \boldsymbol{B}=(\boldsymbol{A} \times \boldsymbol{B})_{z}=A_{x} B_{y}-A_{y} B_{x}
$$

Memorizing the Cross Product

$\boldsymbol{A} \times \boldsymbol{B}=$ vector

$$
\begin{aligned}
(\boldsymbol{A} \times \boldsymbol{B})_{z} & =A_{x} B_{y}-A_{y} B_{x} \\
(\boldsymbol{A} \times \boldsymbol{B})_{x} & =A_{y} B_{z}-A_{z} B_{y} \\
(\boldsymbol{A} \times \boldsymbol{B})_{y} & =A_{z} B_{x}-A_{x} B_{z}
\end{aligned}
$$

Torque and Angular Momentum

The Vector Nature of Torque

With torque we move from the plane to 3 dimensions

The vectors \vec{r} and \vec{F} are in the $x-y$ plane. The torque is the result of a cross product operation. This will result in the torque vector pointing in the z-direction, perpendicular to the $\mathrm{x}-\mathrm{y}$ plane.

The Vector Nature of Angular Momentum

Angular momentum is a vector. Its direction is defined with a righthand rule.

The Vector Nature of Angular Momentum

The vectors \vec{r} and \vec{p} are in the $x-y$ plane. The angular momentum is the result of a cross product operation. This will result in an angular momentum vector pointing in the z direction, perpendicular to the $x-y$ plane.

Motion in a Plane

$$
\vec{L}=\vec{r} \times \vec{p}=\vec{r} \times m \vec{v}=r m v \hat{k}=m r^{2} \omega \hat{k}=m r^{2} \vec{\omega}=I \vec{\omega}
$$

Angular Momentum \& Symmetry

Without symmetry about the axis of rotation $\vec{\omega}$ and \vec{L} are not co-axial.

Angular Momentum \& Symmetry

With symmetry about the axis of rotation $\vec{\omega}$ and \vec{L} are co-axial.

This is the typical symmetry that we will be studying.

Angular Momentum About an Origin

Consider this a point mass.

Angular Momentum About an Origin

$\vec{L}=\vec{r} \times \vec{p}=\left(x \hat{i}+y_{0} \hat{j}\right) \times(-m v \hat{i})$
$\vec{L}=-y_{0} m v(\hat{j} \times \hat{i})=y_{0} m v \hat{k}$

Consider this a point mass.

Angular Momentum About an Origin

Uniform mass

$$
\vec{L}=I \vec{\omega}=I \omega \hat{k}=\frac{I}{2} M R^{2} \omega \hat{k}
$$

Orbital and Spin Angular Momentum

This decomposition of angular momentum into orbital and spin components is also useful in atomic physics and quantum mechanics

Atwood - Once More

- Massive pulley with friction between the pulley and string - no slipping.
- Pulley has a frictionless bearing.
- Massless string.

The first approach will be to set the net torque on the pulley equal to the rate of change of the angular
 momentum

$$
\sum \tau_{e x t z}=\frac{d L_{z}}{d t}
$$

The equation will be solved for α and related to the tangential acceleration, "a", by the non-slip condition.

Atwood - Once More

$\sum_{\tau_{\text {ext }}}=\frac{d L_{z}}{d t}$
Before writing a general equation we identify those forces that will create a torque.

$$
\begin{aligned}
& F_{n}=N \\
& F_{g p}=M g \\
& F_{g l}=m_{1} g \\
& F_{g 2}=m_{2} g
\end{aligned}
$$

We need to re-label the variables so that we recognize our old friends.

Only m_{1} and m_{2} can create torques. The others pass through the axis of rotation.

The Atwood Pulley - Close Up

Massive pulley with friction between the pulley and string.

$$
\begin{aligned}
& \sum \tau_{e x t z}=\tau_{1}+\tau_{2} \\
& \sum \tau_{e x t z}=m_{1} g R-m_{2} g R \\
& L_{z}=L_{l}+L_{2}+L_{p} \\
& L_{z}=m_{1} v R+m_{2} v R+I \omega
\end{aligned}
$$

The Atwood Pulley - Close Up

$$
\begin{aligned}
& \sum \tau_{\text {ext } z}=\frac{d L_{z}}{d t} \\
& \sum \tau_{\text {ext } z}=m_{1} g R-m_{2} g R=\frac{d}{d t}\left(m_{l} v R+m_{2} v R+I \omega\right) \\
& m_{1} g R-m_{2} g R=\left(m_{l}+m_{2}\right) R a+I \alpha \\
& m_{1} g R-m_{2} g R=\left(m_{l}+m_{2}\right) R a+\frac{l}{2} M R^{2} \frac{a}{R}
\end{aligned}
$$

Solve the above equation for the acceleration a.

The Atwood Pulley - Close Up

$$
\begin{aligned}
& a=\frac{m_{1}-m_{2}}{m_{1}+m_{2}+\frac{1}{2} M} g \\
& \alpha=\frac{a}{R}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}+\frac{1}{2} M} \frac{g}{R}
\end{aligned}
$$

Conservation of Angular Momentum

$$
\begin{aligned}
& \text { If } \sum \vec{\tau}_{e x t}=\frac{d \vec{L}}{d t}=0 \\
& \quad \text { Then } \vec{L} \text { is constant }
\end{aligned}
$$

In both magnitude and direction

The Gyroscope Geometry

Angular Momentum Demo

Consider a person holding a spinning wheel. When viewed from the front, the wheel spins CCW.

Holding the wheel horizontal, they step on to a platform that is free to rotate about a vertical axis.

Angular Momentum Demo

Initially there is no angular momentum about the vertical axis. When the wheel is moved so that it has angular momentum about this axis, the platform must spin in the opposite direction so that the net angular momentum stays zero.

This is a result of conserving angular momentum.

Is angular momentum conserved about the direction of the wheel's initial, horizontal axis?

No, that angular momentum is not conserved.
The earth exerts a torque on the system (platform + person), thus angular momentum is not conserved here.

(a)

(b)

What is ω_{p}, the angular velocity of the precession?

$$
\begin{aligned}
& \tau=\frac{d L}{d t} \quad d L=\tau d t \quad \tau=D M g \\
& d \varphi=\frac{d L}{L}=\frac{D M g d t}{L} \\
& \omega_{p}=\frac{d \varphi}{d t}=\frac{M g D}{L}
\end{aligned}
$$

Conservation of Angular Momentum

Extra Slides

