Chapter 14

Fluids

Fluids

- Density
- Pressure in a Fluid
- Buoyancy and Archimedes Principle
- Fluids in Motion

Fluid $=$ Gas or Liquid

Densities

Table 13-1 Densities of Selected Substances

Densities

The density values exceed five orders of magnitude.

Densities

$$
\begin{gathered}
\text { Mass }=\text { Density } * \text { Volume } \\
m=\rho V \\
k g=\frac{k g}{m^{3}} \times m^{3} \\
1 \frac{g}{\mathrm{~cm}^{3}}=\frac{g}{\mathrm{~cm}^{3}} \times \frac{\mathrm{kg}}{1000 g} \times\left(\frac{10^{2} \mathrm{~cm}}{\mathrm{~m}}\right)^{3} \\
1 \frac{g}{\mathrm{~cm}^{3}}=\frac{g}{\mathrm{~cm}^{3}} \times \frac{\mathrm{kg}}{1000 g} \times \frac{10^{6} \mathrm{~cm}^{3}}{\mathrm{~m}^{3}} \\
1 \frac{g}{\mathrm{~cm}^{3}}=\frac{10^{3} \mathrm{~kg}}{\mathrm{~m}^{3}}
\end{gathered}
$$

Pressure

Pressure arises from the collisions between the particles of a fluid with another object (container walls for example).

There is a momentum change (impulse) that is away from the container walls. There must be a force exerted on the particle by the wall.

By Newton's $3^{\text {rd }}$ Law, there is a force on the wall due to the particle.

Pressure is defined as $P=\frac{F}{A}$.

The units of pressure are $\mathrm{N} / \mathrm{m}^{2}$ and are called Pascals (Pa).

Note: 1 atmosphere $(\mathrm{atm})=101.3 \mathrm{kPa}$

Example (text problem 9.1): Someone steps on your toe, exerting a force of 500 N on an area of $1.0 \mathrm{~cm}^{2}$. What is the average pressure on that area in atmospheres?

$$
\begin{aligned}
& 1.0 \mathrm{~cm}^{2}\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)^{2}=1.0 \times 10^{-4} \mathrm{~m}^{2} \quad \begin{array}{l}
\text { A } 500 \mathrm{~N} \text { person } \\
\text { weighs about } \\
113 \mathrm{lbs} .
\end{array} \\
P_{\mathrm{av}}= & \frac{F}{A}=\frac{500 \mathrm{~N}}{1.0 \times 10^{-4} \mathrm{~m}^{2}} \\
= & 5.0 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}\left(\frac{1 \mathrm{~Pa}}{1 \mathrm{~N} / \mathrm{m}^{2}}\right)\left(\frac{1 \mathrm{~atm}}{1.013 \times 10^{5} \mathrm{~Pa}}\right) \\
= & 49 \mathrm{~atm}
\end{aligned}
$$

Gravity's Effect on Fluid Pressure

FBD for the fluid cylinder
(a)

Apply Newton's $2^{\text {nd }}$ Law to the fluid cylinder. Since the fluids isn't moving the net force is zero.

$$
\begin{gathered}
\sum F=P_{2} A-P_{1} A-w=0 \\
P_{2} A-P_{1} A-(\rho A d) g=0 \\
P_{2}-P_{1}-\rho g d=0 \\
\therefore P_{2}-P_{1}=\rho g d \\
\text { or } P_{2}=P_{1}+\rho g d
\end{gathered}
$$

If P_{1} (the pressure at the top of the cylinder) is known, then the above expression can be used to find the variation of pressure with depth in a fluid.

If the top of the fluid column is placed at the surface of the fluid, then $\mathrm{P}_{1}=\mathrm{P}_{\text {atm }}$ if the container is open.

$$
P=P_{\mathrm{atm}}+\rho g d
$$

You noticed on the previous slide that the areas canceled out. Only the height matters since that is the direction of gravity.

Think of the pressure as a force density in $\mathrm{N} / \mathrm{m}^{2}$

Measuring Pressure

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Open to the
A manometer is a U-shaped tube that is partially filled with liquid, usually Mercury (Hg).

Both ends of the tube are open to the atmosphere.

A container of gas is connected to one end of the U-tube

If there is a pressure difference between the gas and the atmosphere, a force will be exerted on the fluid in the U-tube. This changes the equilibrium position of the fluid in the tube.

From the figure: At point C $\quad P_{\mathrm{c}}=P_{\mathrm{atm}}$
Also

$$
P_{\mathrm{B}}=P_{\mathrm{B}^{\prime}}
$$

The pressure at point B is the pressure of the gas.

$$
\begin{aligned}
& P_{B}=P_{B^{\prime}}=P_{C}+\rho g d \\
& P_{B}-P_{C}=P_{B}-P_{\mathrm{atm}}=\rho g d \\
& P_{\text {gauge }}=\rho g d \\
& \quad P_{\text {gauge }}=P_{\text {meas }}-P_{\text {atm }}
\end{aligned}
$$

Siphoning

Atmospheric Pressure Will Support a Column of Fluid

> The column is sealed at one end, filled with the fluid and then inverted into a container of the same fluid.

The difference in pressure between the two ends of the column makes the process work

A Barometer

The atmosphere pushes on the container of mercury which forces mercury up the closed, inverted tube. The distance d is called the barometric pressure.

From the figure

$$
\text { and } \quad P_{A}=\rho g d
$$

Atmospheric pressure is equivalent to a column of mercury 76.0 cm tall.

The Many Units of Pressure

1 ATM equals $\quad 1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
$14.7 \mathrm{lbs} / \mathrm{in}^{2}$
1.013 bar
76 cm Hg
760 mm Hg
760 Torr
$34 \mathrm{ft} \mathrm{H}_{2} \mathrm{O}$
29.9 in Hg

Pascal's Principle

A change in pressure at any point in a confined fluid is transmitted everywhere throughout the fluid. (This is useful in making a hydraulic lift.)

The applied force is transmitted to the piston of cross-sectional area A_{2} here.

Apply a force F_{1} here to a piston of crosssectional area A_{1}.

Mathematically,

ΔP at point $1=\Delta P$ at point 2

$$
\begin{aligned}
& \frac{\mathrm{F}_{1}}{\mathrm{~A}_{1}}=\frac{\mathrm{F}_{2}}{\mathrm{~A}_{2}} \\
& F_{2}=\left(\frac{\mathrm{A}_{2}}{\mathrm{~A}_{1}}\right) F_{1}
\end{aligned}
$$

Example: Assume that a force of 500 N (about 110 lbs) is applied to the smaller piston in the previous figure. For each case, compute the force on the larger piston if the ratio of the piston areas $\left(\mathrm{A}_{2} / \mathrm{A}_{1}\right)$ are 1,10 , and 100 .

Using Pascal's Principle:

A_{2} / A_{1}	$\mathrm{~F}_{2}$
1	500 N
10	5000 N
100	$50,000 \mathrm{~N}$

Pressure Depends Only on the Vertical Height

"Pressure depends only on the depth of the fluid, not on the shape of the container. So the pressure is the same for all parts of the container that are at the same depth."

Pressure Gauge

When the tire is flat the pressure inside the tire is atmospheric pressure.

Law of Atmosphere

$$
\begin{aligned}
& \frac{d P}{d y}=-\lambda P \\
& \int \frac{d P}{P}=-\int \lambda d y
\end{aligned}
$$

Pressure Decrease with Height

$$
\begin{array}{ll}
P(y)=P_{0} e^{-\lambda y} \\
\lambda=\frac{\ln (2)}{5.5(k m)} \\
P(y)=P_{0} \exp \left[-\frac{y(k m)}{5.5} \ln (2)\right]
\end{array}
$$

Archimedes's Principle

"A body wholly or partially submerged in a fluid is buoyed up by a force equal to the weight of the fluid displaced."

Archimedes's Principle

(a) Crown and gold nugget have equal weight.

(b) Crown displaces more water than does the gold nugget.

Archimedes's Principle

(a) Crown and gold nugget have equal weight.

$$
\begin{aligned}
& m_{1} g=m_{2} g \\
& m_{1}=m_{2} \\
& \rho_{1} V_{1}=\rho_{2} V_{2}
\end{aligned}
$$

The density and volume are tied together

Archimedes's Principle

(b) Crown displaces more water than does the gold nugget.

$$
\begin{aligned}
& B F_{1}>B F_{2} \\
& \rho_{L} V_{1} g>\rho_{L} V_{2} g \\
& V_{l}>V_{2} \\
& \text { Since } \rho_{I} V_{1}=\rho_{2} V_{2} \\
& \rho_{1}<\rho_{2}
\end{aligned}
$$

The crown isn't 100% gold.

Archimedes's Principle

Archimedes' Principle

An FBD for an object floating submerged in a fluid.

The total force on the block due to the fluid is called the buoyant force.

$$
\begin{gathered}
\mathbf{F}_{B}=\mathbf{F}_{2}-\mathbf{F}_{1} \\
\text { where }\left|\mathbf{F}_{2}\right|>\left|\mathbf{F}_{1}\right|
\end{gathered}
$$

Buoyant force $=$ the weight of the fluid displaced

The magnitude of the buoyant force is:

$$
\begin{aligned}
F_{B} & =F_{2}-F_{1} \\
& =P_{2} A-P_{1} A \\
& =\left(P_{2}-P_{1}\right) A
\end{aligned}
$$

From before: $\quad P_{2}-P_{1}=\rho g d$
The result is

$$
F_{B}=\rho g d A=\rho g V
$$

Example: A flat-bottomed barge loaded with coal has a mass of $3.0 \times 10^{5} \mathrm{~kg}$. The barge is 20.0 m long and 10.0 m wide. It floats in fresh water. What is the depth of the barge below the waterline?

$$
\begin{aligned}
& \text { FBD for } \\
& \text { the barge }
\end{aligned}
$$

Example: A piece of metal is released under water. The volume of the metal is $50.0 \mathrm{~cm}^{3}$ and its specific gravity is 5.0 . What is its initial acceleration? (Note: when $\mathrm{v}=0$, there is no drag force.)

Apply Newton's $2^{\text {nd }}$ Law to the piece of metal:

$$
\sum F=F_{B}-w=m a
$$

The magnitude of the buoyant force equals the weight of the fluid displaced by the metal.

$$
F_{B}=\rho_{\text {water }} V g
$$

Solve for a:

$$
a=\frac{F_{B}}{m}-g=\frac{\rho_{\text {water }} V g}{\rho_{\text {object }} V_{\text {object }}}-g=g\left(\frac{\rho_{\text {water }} V}{\rho_{\text {object }} V_{\text {object }}}-1\right)
$$

Example continued:

Since the object is completely submerged $\mathrm{V}=\mathrm{V}_{\text {object. }}$

$$
\begin{aligned}
& \text { specific gravity }=\frac{\rho}{\rho_{\text {water }}} \\
& \text { where } \rho_{\text {water }}=1000 \mathrm{~kg} / \mathrm{m}^{3} \text { is the } \\
& \text { density of water at } 4{ }^{\circ} \mathrm{C} \text {. }
\end{aligned}
$$

$$
\begin{gathered}
\text { Given specific gravity }=\frac{\rho_{\text {object }}}{\rho_{\text {water }}}=5.0 \\
a=g\left(\frac{\rho_{\text {water }} V}{\rho_{\text {object }} V_{\text {object }}}-1\right)=g\left(\frac{1}{S . G .}-1\right)=g\left(\frac{1}{5.0}-1\right)=-7.8 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

The sign is minus because gravity acts down. BF causes $\mathrm{a}<\mathrm{g}$.

Fluid Flow

A moving fluid will exert forces parallel to the surface over which it moves, unlike a static fluid. This gives rise to a viscous force that impedes the forward motion of the fluid.

A steady flow is one where the velocity at a given point in a fluid is constant.

Steady flow is laminar; the fluid flows in layers. The path that the fluid in these layers takes is called a streamline.

Streamlines do not cross.

Crossing streamlines would indicate a volume of fluid with two different velocities at the same time.

An ideal fluid is incompressible, undergoes laminar flow, and has no viscosity.

The Continuity Equation-Conservation of Mass

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The amount of mass that flows though the cross-sectional area A_{1} is the same as the mass that flows through cross-sectional area A_{2}.
$\frac{\Delta m}{\Delta t}=\rho A v \quad$ is the mass flow rate (units kg / s)
$\frac{\Delta V}{\Delta t}=A v=I_{V}=Q \quad \begin{aligned} & \text { is the volumetric flow } \\ & \text { rate }\left(\mathrm{m}^{3} / \mathrm{s}\right)\end{aligned}$
In general the continuity equation is

$$
I_{M 1}-I_{M 2}=\frac{d m_{l 2}}{d t}
$$

If $\frac{d m_{12}}{d t}=0$ then $\quad \rho_{1} A_{1} v_{1}=\rho_{2} A_{2} v_{2}$
If the fluid is incompressible, then $\rho_{1}=\rho_{2}$.

Example: A garden hose of inner radius 1.0 cm carries water at 2.0 m / s. The nozzle at the end has radius 0.20 cm . How fast does the water move through the constriction?

$$
\begin{aligned}
A_{1} v_{1} & =A_{2} v_{2} \\
v_{2} & =\left(\frac{A_{1}}{A_{2}}\right) v_{1}=\left(\frac{\pi r_{1}^{2}}{\pi r_{2}^{2}}\right) v_{1} \\
& =\left(\frac{1.0 \mathrm{~cm}}{0.20 \mathrm{~cm}}\right)^{2}(2.0 \mathrm{~m} / \mathrm{s})=50 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Bernoulli's Equation

Bernoulli's equation is a statement of energy conservation.

This is the most general equation

Torricelli’s Law

Application of Bernoulli's Law

Torricelli's Law states that the water exiting the hole in the side of the beaker has a speed equal to that it would have had after falling a verticle distance $\Delta \mathrm{h}$.

$$
\begin{aligned}
& \rho g h_{a}=\rho g h_{b}+\frac{1}{2} \rho v_{b}^{2} \\
& v_{b}=\sqrt{2 g \Delta h}
\end{aligned}
$$

Venturi Meter

Venturi Meters - Good Transitions

Closed design; One fluid

Open design; One fluid

Venturi Meter

$$
\begin{aligned}
& P_{1}+\frac{1}{2} \rho_{F} v_{l}^{2}=P_{2}+\frac{1}{2} \rho_{F} v_{2}^{2} \\
& v_{2}=\frac{A_{1}}{A_{2}} v_{l}=r v_{1}
\end{aligned}
$$

$$
P_{1}-P_{2}=\rho_{L} g \Delta h-\rho_{F} g \Delta h
$$

What about the rest of the fluid in the column?

$$
v_{l}=\sqrt{\frac{2\left(\rho_{L}-\rho_{F}\right) g \Delta h}{\rho_{F}\left(r^{2}-l\right)}}
$$

End of Chapter Problems

Cartesian Diver

http://www.lon-capa.org/~mmp/applist/f/f.htm

Extra Slides

Low pressures such as natural gas lines are sometimes specified in inches of water, typically written as w.c. (water column) or W.G. (inches water gauge). A typical gas using residential appliance is rated for a maximum of 14 w.c. which is approximately 0.034 atmosphere.

In the United States the accepted unit of pressure measurement for the HVAC industry is inches of water column.

Application of Pascal's Principle

