
Chapter 14

Fluids
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Fluids

• Density

• Pressure in a Fluid

• Buoyancy and Archimedes 

Principle

• Fluids in Motion

Fluid = Gas or Liquid
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Densities
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Densities
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Densities
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Pressure

Pressure arises from the collisions between the particles of a fluid 

with another object (container walls for example).

There is a momentum 

change (impulse) that is 

away from the container 

walls.  There must be a 

force exerted on the 

particle by the wall. 
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Pressure is defined as .
A

F
P =

The units of pressure are N/m2 and are called Pascals 

(Pa).

Note: 1 atmosphere (atm) = 101.3 kPa 

By Newton’s 3rd Law, there is a force on the wall due 

to the particle.
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Example (text problem 9.1): Someone steps on your toe, exerting 

a force of 500 N on an area of 1.0 cm2.  What is the average 

pressure on that area in atmospheres?

atm 49

Pa 10013.1

atm 1

N/m 1

Pa 1
N/m 100.5

m 101.0
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A 500N person 

weighs about 

113 lbs.
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Gravity’s Effect on Fluid Pressure

An imaginary 

cylinder of 

fluid

FBD for the fluid cylinder

P1A

P2A
w

x

y

Imaginary cylinder 

can be any size
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Apply Newton’s 2nd Law to the fluid cylinder. Since the 

fluids isn’t moving the net force is zero.
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If P1 (the pressure at the top of the cylinder) is known, then the 

above expression can be used to find the variation of pressure 

with depth in a fluid.



MFMcGraw-PHY2425 Chap_14Ha-Fluids-Revised 10/13/2012 11

If the top of the fluid column is placed at the surface of the fluid, 

then P1 = Patm if the container is open.

gdPP ρ+= atm 

You noticed on the previous slide that the areas canceled out. 

Only the height matters since that is the direction of gravity. 

Think of the pressure as a force density in N/m2
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Measuring Pressure

A manometer is a 

U-shaped tube that 

is partially filled 

with liquid, 

usually Mercury 

(Hg).

Both ends of the 

tube are open to the 

atmosphere.
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A container of gas is connected to one end of the U-tube

If there is a pressure difference between the gas and the atmosphere, a force 

will be exerted on the fluid in the U-tube.  This changes the equilibrium 

position of the fluid in the tube.

Equal pressure Equal pressure
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Also

atmc PP =At point C

B'B PP =

The pressure at point B is the pressure of the gas.

gdP

gdPPPP

gdPPP

BCB

CBB

ρ

ρ

ρ

=

=−=−

+==

gauge

atm

'

From the figure:

gauge meas atmP = P - P
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Siphoning
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Atmospheric Pressure Will Support a 

Column of Fluid

The column is sealed at one 

end, filled with the fluid and 

then inverted into a container 

of the same fluid. 

The difference in pressure 

between the two ends of the 

column makes the process 

work
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A Barometer

The atmosphere pushes on the container of mercury which forces 

mercury up the closed, inverted tube.  The distance d is called 

the barometric pressure.
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Atmospheric pressure is equivalent to a column of 

mercury 76.0 cm tall.

gdPA ρ=

From the figure atmBA PPP ==

and
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The Many Units of Pressure

1 ATM equals 1.013x105 N/m2 

14.7 lbs/in2

1.013 bar

76 cm Hg

760 mm Hg

760 Torr

34 ft H2O

29.9 in Hg
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Pascal’s Principle

A change in pressure at any point in a confined fluid is 

transmitted everywhere throughout the fluid.  (This is 

useful in making a hydraulic lift.)
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Apply a force F1 here 

to a piston of cross-

sectional area A1.

The applied force is 

transmitted to the piston 

of cross-sectional area 

A2 here.

In these problems neglect 

pressure due to columns 

of fluid.
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Mathematically, 
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Example: Assume that a force of 500 N (about 110 lbs) is applied to 

the smaller piston in the previous figure.  For each case, compute 

the force on the larger piston if the ratio of the piston areas (A2/A1) 

are 1, 10, and 100.  

50,000 N100

5000 N10

500 N1

F2
12 AA

Using Pascal’s Principle:
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Pressure Depends Only on the Vertical 

Height

“Pressure depends only on the depth of the fluid, not on the 

shape of the container. So the pressure is the same for all 

parts of the container that are at the same depth.”



MFMcGraw-PHY2425 Chap_14Ha-Fluids-Revised 10/13/2012 25

Pressure Gauge

Pgauge = P -  Patm

When the tire is flat the pressure inside the tire is 

atmospheric pressure.
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Law of Atmosphere
dP

= -λP
dy

dP
 = -  λdy

P∫ ∫
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Pressure Decrease with Height

 
  

-λy

0

0

P(y) = P e

ln(2)
λ =

5.5(km)

y(km)
P(y) = P exp - ln(2)

5.5
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Archimedes’s Principle

“A body wholly or partially submerged in a fluid is 

buoyed up by a force equal to the weight of the fluid 

displaced.”
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Archimedes’s Principle
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Archimedes’s Principle

1 2

1 2

1 1 2 2

m g = m g

m = m

ρ V = ρ V

The density and 

volume are tied 

together
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Archimedes’s Principle

1 2

L 1 L 2

1 2

BF > BF

ρ V g > ρ V g

V > V

1 1 2 2

1 2

Since  ρ V = ρ V

ρ < ρ

The crown isn’t 100% gold.
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Archimedes’s Principle
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Archimedes’ Principle

An FBD for an object floating 

submerged in a fluid.

The total force on the block due to 

the fluid is called the buoyant force. 
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The magnitude of the buoyant force is:

( )APP

APAP

FFFB

12

12

12

−=

−=

−=

gdPP ρ=− 12From before:

gVgdAFB ρρ ==The result is

Buoyant force = the weight of the fluid displaced
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Example: A flat-bottomed barge loaded with coal has a mass of 

3.0×105 kg.  The barge is 20.0 m long and 10.0 m wide.  It floats in 

fresh water.  What is the depth of the barge below the waterline?

x

y

w

FB

FBD for 

the barge

Apply Newton’s 2nd Law to the barge:

( )

( ) bw
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bwww
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Example: A piece of metal is released under water.  The volume of 

the metal is 50.0 cm3 and its specific gravity is 5.0. What is its initial 

acceleration?  (Note: when v = 0, there is no drag force.)

FBD for 

the metal
mawFF B =−=∑

VgFB waterρ=

The magnitude of the buoyant force 

equals the weight of the fluid displaced 

by the metal.

Solve for a: 












−=−=−= 1

ρ

ρ

ρ

ρ

objectobject

water

objectobject

water

V

V
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F
a B

Apply Newton’s 2nd Law to 

the piece of metal:

x

y

w

FB
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Since the object is completely submerged V=Vobject.

water

gravity  specific
ρ

ρ
=

where ρwater = 1000 kg/m3 is the 

density of water at 4 °C.

Given 0.5gravity  specific
water

object
==

ρ

ρ

2

objectobject

water m/s 8.71
0.5

1
1

..

1
1

ρ

ρ
−=
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GS
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V

V
ga

Example continued:

The sign is minus because gravity acts down. BF causes a < g.
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Fluid Flow

A moving fluid will exert forces parallel to the surface over which 

it moves, unlike a static fluid.  This gives rise to a viscous force 

that impedes the forward motion of the fluid.

A steady flow is one where the velocity at a given point in a 

fluid is constant.

V1 = 

constant

V2 = 

constant
v1≠v2
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Steady flow is laminar; the fluid flows in layers.  The 

path that the fluid in these layers takes is called a 

streamline.  

An ideal fluid is incompressible, undergoes laminar 

flow, and has no viscosity.

Streamlines do not cross.

Crossing streamlines would indicate a volume of fluid with 

two different velocities at the same time.
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The Continuity Equation—Conservation of Mass

The amount of mass that flows though the cross-sectional area A1 

is the same as the mass that flows through cross-sectional area A2. 

Faster                            Slower
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is the mass flow rate (units kg/s)Av
t

m
ρ=

∆

∆

V

∆V
= Av = I = Q

∆t
is the volumetric flow 

rate (m3/s)

222111 vAvA ρρ =

In general the continuity equation is

If the fluid is incompressible, then ρ1= ρ2.

12
M1 M2

dm
I - I =

dt

12dm
= 0

dt
If                   then    
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Example: A garden hose of inner radius 1.0 cm carries water at 2.0 

m/s.  The nozzle at the end has radius 0.20 cm.  How fast does the 

water move through the constriction?

( )

1 1 2 2

2

1 1

2 1 12

2 2

2

A v = A v

A r
v  =  v   =  v

A πr

1.0 cm
= 2.0 m / s = 50 m / s

0.20 cm

π  
     

   

 
 
 

Simple ratios
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Bernoulli’s Equation

Bernoulli’s equation is a statement of energy 

conservation.
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2

222

2

111
2

1

2

1
vgyPvgyP ρρρρ ++=++

Potential 

energy 

per unit 

volume

Kinetic 

energy 

per unit 

volume

Work per 

unit volume  

done by the 

fluid

Points 1 and 2 

must be on the 

same streamline

This is the most general equation
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Torricelli’s Law

Application of Bernoulli’s Law
Torricelli’s Law states 

that the water exiting 

the hole in the side of 

the beaker has a speed 

equal to that it would 

have had after falling 

a verticle distance ∆h.

21
a b b2

b

ρgh = ρgh + ρv

v = 2g∆h
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Venturi Meter

Poor transition zones

Closed design; 

Two fluids
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Venturi Meters - Good Transitions

Closed design; 

One fluid

Open design; 

One fluid
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Venturi Meter

2 21 1

1 F 1 2 F 22 2

1

2 1 1

2

1 2 L F

L F

1 2

F

P  +  ρ v  = P +  ρ v

A
v = v = rv

A

P - P  = ρ g∆h - ρ g∆h

2(ρ - ρ )g∆h
v =

ρ (r - 1)

What about the rest of 

the fluid in the column?
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End of Chapter Problems
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Cartesian Diver

http://www.lon-capa.org/~mmp/applist/f/f.htm

In reality it is essential 

that the large bottle be 

filled with water.
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Extra Slides
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Low pressures such as natural gas lines are sometimes 

specified in inches of water, typically written as w.c. 

(water column) or W.G. (inches water gauge). A typical 

gas using residential appliance is rated for a maximum of 

14 w.c. which is approximately 0.034 atmosphere.

In the United States the accepted unit of pressure 

measurement for the HVAC industry is inches of water 

column. 
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Point 1 Point 2

Application of Pascal’s Principle


