
Chapter 16

Traveling Waves



MFMcGraw-PHY 2425 Chap_16Ha-Waves-Revised 10/13/2012 2

Traveling Waves

• Simple Wave Motion

• Periodic Waves

• Waves in Three Dimensions

• Waves Encountering Barriers

• The Doppler Effect
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Transverse Waves



MFMcGraw-PHY 2425 Chap_16Ha-Waves-Revised 10/13/2012 4

Longitudinal Waves
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The Excitation of a Transverse Wave

The speed with which the string is moved vertically is 

independent of the speed with the wave travels horizontally 

down the string.

Boundary Condition:

The end of the string is stationary
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Transverse Waves on a String

M

Attach a 

wave 

driver here

L

Attach a mass to a string to provide tension.  The string 

is then shaken at one end with a frequency f.



MFMcGraw-PHY 2425 Chap_16Ha-Waves-Revised 10/13/2012 7

A wave traveling on this string will have a speed of

µ

F
v =

where F is the force applied to the string (tension) and 

µ is the mass/unit length of the string (linear mass 

density).

Transverse Waves on a String
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Example: When the tension in a cord is 75.0 N, the wave 

speed is 140 m/s.  What is the linear mass density of the cord?

µ

F
v =The speed of a wave on a string is

( )
kg/m 108.3

m/s 140

N 0.75 3

22

−×===
v

F
µ

Solving for the linear mass density:

Transverse Waves on a String
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Speed of Sound in Various Materials
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The period T is measured by the amount of time it takes 

for a point on the wave to go through one complete cycle 

of oscillations.  The frequency is then f = 1/T.

Periodic Waves
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Wave Nomenclature

λ = Wavelength
A = Amplitude

v = wave velocity
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The maximum 

displacement 

from equilibrium 

is amplitude (A) 

of a wave.

One way to determine the wavelength is by measuring 

the distance between two consecutive crests.

Periodic Waves
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Example: What is the wavelength of a wave whose 

speed and period are 75.0 m/s and 5.00 ms, respectively?

( )( ) m 3750s 10005m/s 075 3
...vT =×== −λ

Solving for the wavelength:

T
fv

λ
λ ==

Periodic Waves
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Wave Properties
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∂ ∂

∂ ∂

2 2

2 2 2

y 1 y
- = 0

x v t

y(t) = Asin(kx -ωt)

2π 2π
k = ;   ω= 2πf =

λ T

  
    

x t
y(t) = Asin 2π -

λ T

x t
- = Constant
λ T

dx dt
- = 0

λ T

dx
= f = v

dt T

λ
λ=

The Full Wave Equation

Traveling with the wave the phase is constant

Wave velocity
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Sound Waves

Sound waves are 

compression waves 

and are longitudinal 

in nature.

Pressure

Displacement

The pressure (i.e. density) 

variation is easier to follow
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Wave Fronts and Rays

The wave fronts represent positions of constant phase.

The rays are perpendicular to these wave fronts and point in 

the direction the wave is traveling.
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Plane Wave Wave Fronts and Rays

Far from a spherical source the wave front approximates a 

plane wave.
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Intensity is a measure of the amount of energy/sec that 

passes through a square meter of area perpendicular to the 

wave’s direction of travel.

2 2

Power P
I = =

4π r 4π r

Intensity has units 

of watts/m2 .

This is an inverse square law.  The intensity drops as the 

inverse square of the distance from the source.  

(Light sources appear dimmer the farther away from them you 

are.)

Waves and Energy Transport
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Example: At the location of the Earth’s upper atmosphere, the 

intensity of the Sun’s light is 1400 W/m2.  What is the 

intensity of the Sun’s light at the orbit of the planet Mercury? 
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Waves and Energy Transport
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Wave Intensity - Sound Waves

 

avg avg

2

P P
I = =

A 4π r
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The energy density approach is very useful for 

electromagnetic waves.
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Sound Intensity
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Sound Intensity vs Frequency
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Sound Levels and 

Decibels
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Amplitude & Intensity of Sound Waves

For sound waves:

2

0

2

0

sI

pI

∝

∝ p0 is the pressure amplitude and

s0 is the displacement amplitude.

The intensity of sound waves follows 

an inverse square law. 
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Sound Loudness is measured by the logarithm of 

the intensity.

The threshold of hearing 

is at an intensity of 10−12 

W/m2.

The threshold of hearing 

is at an intensity of 10−12 

W/m2.

Sound intensity level is 

defined by - dB are decibels
( )

0

logdB10
I

I
=β

Decibels are used when the signal can cover many 

orders of magnitude. They help turn multiplication into 

addition and division into subtraction.
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Example: The sound level 25 m from a loudspeaker is 71 

dB.  What is the rate at which sound energy is being 

produced by the loudspeaker, assuming it to be an 

isotropic source?

( )( ) 251.72121.7

0

1.7

0

0

 W/m103.110W/m1010

10

1.7log

−− ×===

=

=

II

I

I

I

I

Solve for I, the intensity of a sound wave:

( ) dB 71logdB10
0

==
I

I
βGiven:
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Sound Energy Traveling in Three 
Dimensions

Assuming an isotropic 

source means that we 

are assuming that the 

energy from that 

source travels in all 

directions equally
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The intensity of an isotropic source is defined by:

( )
 Watts10.0

m 254)W/m103.1(

4

4

225
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2

=
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=
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− π

π

π

rIP

r
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Example continued:
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Logarithm Refresher
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Rules

1. Inverse properties:   loga (a
x) = x   and   a(loga(x)) = x

2. Product:  loga (xy) = loga (x) + loga (y)

3. Quotient: loga (x/y) = loga (x) - loga (y)

4. Power:   loga (x
p) = p loga (x)

5. Change of base formula: loga (x) = logb (x) / logb (a) 

Careful!!

loga (x + y) <> loga (x) + loga (y)

loga (x – y) <> loga (x) – loga (y)
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Example:  Two sounds have levels of 80 dB and 90 dB.  

What is the difference in the sound intensities?

( ) 2
2

0

I
β = 10dB log = 90 dB

I
( ) 1

1

0

I
β = 10dB log = 80 dB

I

1

1

2

1

2

1

2

0

1

0

2
12

10

1log

logdB 10dB 10

loglogdB 10dB 10

=
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ββSubtracting:

and I2 = 10 I1
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Reflected and Transmitted Waves
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Reflected Waves - More Dense
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Reflected Waves - Less Dense
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Reflection and Transmission Coefficients

r 2 1

i 2 1

t 2

i 2 1

h v - v
r = =

h v + v

h 2v
τ = =

h v + v

Fresnel 

relations
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Energy Consevation in Waves

2 21

2

v
1 = r  +  τ

v
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Reflected Waves - Light

More 

optically 

dense

Less 

optically 

dense
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Reflection & Refraction - Light
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The frequency of the transmitted wave remains the 

same.  However, both the wave’s speed and wavelength 

are changed such that:

2

2

1

1

λλ

vv
f ==

The transmitted wave will also suffer a change 

in propagation direction (refraction).

The Frequency is Constant
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Refraction of Sound
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Diffraction is the spreading of a wave around 

an obstacle in its path and it is common to all 

types of waves.

The size of the obstacle must be similar to the 

wavelength of the wave for the diffraction to 

be observed.

Larger by 10x is too big and 

smaller by (1/10)x is too small.

Diffraction
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Comparison of Particles & Waves

Particles

Waves
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Wave Diffraction

The size of the slit is 

about the same as the 

wavelength of the water 

ways. As a result the 

diffraction of the wave 

has a noticeable effect.

A plane wave has been 

effectively turned into a 

point source. 
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Wave Diffraction

The diffraction effect is less noticeable if the opening is 

much wider than the wavelength of the waves.
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Doppler Effect

A source of periodic waves in a ripple tank has a velocity 

to the right. Wavelength is compressed in front and 

stretched out in back.
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Doppler Effect

The familiar effect of the drop in frequency of the siren 

after the fire truck passes by is due to the Doppler Effect.
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Doppler Effect

r
r s

s

v ±u
f = f

v ±u

To use the formula remember the frequency 

increases when the source moves toward the 

receiver and when the receiver moves 

toward the source. 

If the source is moving toward the receiver, choose the minus sign in the 

denominator. If the receiver is moving toward the source choose the plus 

sign in the numerator.
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“Supersonic” Waves

To achieve this “supersonic” effect the object must be 

traveling faster than the speed of waves in that medium.
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Supersonic Waves
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These are actual photos of aircraft breaking the sound barrier. This 

phenomenon only happens at the instant an Aircraft breaks the sound 

barrier And it literally appears like the aircraft goes through a wall. 
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http://www.youtube.com/watch?v=QX04ySm4TTk&feature=related



MFMcGraw-PHY 2425 Chap_16Ha-Waves-Revised 10/13/2012 53

End of Chapter 15
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Extra Slides


