Chapter 17

Superposition & Standing Waves

Superposition & Standing Waves

- Superposition of Waves
- Standing Waves

MFMcGraw-PHY 2425

Wave Interference

MFMcGraw-PHY 2425

Chap 17Ha - Superposition - Revised: 10/13/2012

(a) Overlap begins

Constructive Interference

(b) Total overlap; the Slinky has twice the height of either pulse

(c) The receding pulses

MFMcGraw-PHY 2425

Chap 17Ha - Superposition - Revised: 10/13/2012 4

Destructive Interference

(b) Total overlap

(c) The receding pulses

MFMcGraw-PHY 2425

Chap 17Ha - Superposition - Revised: 10/13/2012

Acoustic (Sound) Wave Interference

MFMcGraw-PHY 2425

Chap 17Ha - Superposition - Revised: 10/13/2012

Sound Wave

Pressure variation p_0 (a) x $-p_0$ rarefaction rarefaction compression compression (b) Leading edge Displacement of air elements S₀ Right (+) ŝ (c) Left (-) $-s_0$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Sound waves can be considered from a pressure variation or an air displacement point of view.

MFMcGraw-PHY 2425

Constructive Interference

Common source to maintain phase relationship in both speakers.

MFMcGraw-PHY 2425

Chap 17Ha - Superposition - Revised: 10/13/2012

Destructive Interference

Detailed Interference Geometry

MFMcGraw-PHY 2425

Chap 17Ha - Superposition - Revised: 10/13/2012

Interference in a Ripple Tank

(a)

MFMcGraw-PHY 2425

Chap 17Ha - Superposition - Revised: 10/13/2012

Interference & Diffraction

http://www.pas.rochester.edu/~ksmcf/p100/java/Optics/Diffraction.html

MFMcGraw-PHY 2425 Chap 17Ha - Superposition - Revised: 10/13/2012 12

http://www.austincc.edu/mmcgraw/simulations/wave-interference.jar

MFMcGraw-PHY 2425 Chap 17Ha - Superposition - Revised: 10/13/2012 13

Beats

MFMcGraw-PHY 2425

Chap 17Ha - Superposition - Revised: 10/13/2012

Beats

MFMcGraw-PHY 2425

Chap 17Ha - Superposition - Revised: 10/13/2012

Beat Frequency Example

Chap 17Ha - Superposition - Revised: 10/13/2012

Copyright @ 2006 Paul G. Hewitt, printed courtesy of Pearson Education Inc., publishing as Addison Wesley.

MFMcGraw-PHY 2425

Chap 17Ha - Superposition - Revised: 10/13/2012

Standing Wave on a String

MFMcGraw-PHY 2425

Chap 17Ha - Superposition - Revised: 10/13/2012 19

Tunable Standing Wave Generator

MFMcGraw-PHY 2425

MFMcGraw-PHY 2425

Chap 17Ha - Superposition - Revised: 10/13/2012 22

Fourier Analysis

MFMcGraw-PHY 2425

Chap 17Ha - Superposition - Revised: 10/13/2012

Fourier Analysis

Every waveform can be broken down into its frequency components.

MFMcGraw-PHY 2425

Chap 17Ha - Superposition - Revised: 10/13/2012 24

Fourier Analysis - Square Wave

Chap 17Ha - Superposition - Revised: 10/13/2012

Frequency Component Amplitude

MFMcGraw-PHY 2425

Chap 17Ha - Superposition - Revised: 10/13/2012

Wave Components in Frequency Space Fourier Analysis

MFMcGraw-PHY 2425

Chap 17Ha - Superposition - Revised: 10/13/2012

Musical Instruments

MFMcGraw-PHY 2425

Chap 17Ha - Superposition - Revised: 10/13/2012 2

Pressure Variations in a Pipe

MFMcGraw-PHY 2425

Chap 17Ha - Superposition - Revised: 10/13/2012

Closed Pipe Resonator

MFMcGraw-PHY 2425

Chap 17Ha - Superposition - Revised: 10/13/2012

Open and Closed Pipes Resonance States

Chap 17Ha - Superposition - Revised: 10/13/2012

Pipe Resonator Calculations

Natural frequency dependent on length of pipe

For closed pipe - no "even harmonics"

Fundamental frequency is a half-loop or 1/4 L. Since every harmonic represents the addition of a complete loop, which contains two half-loops, we can never add just one more half-loop.

Thus, we cannot generate even harmonics in closed pipes.

MFMcGraw-PHY 2425 Chap 17Ha - Superposition - Revised: 10/13/2012 33

Pipe Resonator Calculations

MFMcGraw-PHY 2425

Chap 17Ha - Superposition - Revised: 10/13/2012 3

Open Pipe Resonator

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

MFMcGraw-PHY 2425

Closed Pipe Resonator

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

MFMcGraw-PHY 2425

Chap 17Ha - Superposition - Revised: 10/13/2012

Musical Instruments Frequency Components

MFMcGraw-PHY 2425

Chap 17Ha - Superposition - Revised: 10/13/2012

Fundamental Wave and the 4th Harmonic

MFMcGraw-PHY 2425

Chap 17Ha - Superposition - Revised: 10/13/2012

Musical Instrument Waveforms

Figure 11-13 Wave forms of musical sounds. (a) Violin; (b) trumpet; (c) clarinet.

MFMcGraw-PHY 2425

Chap 17Ha - Superposition - Revised: 10/13/2012

Frequency Component Structure

FIG. 13-14. Sound spectra of some musical instruments. (Courtesy of Dr. Harvey Fletcher.)

MFMcGraw-PHY 2425

Chap 17Ha - Superposition - Revised: 10/13/2012

Typical Musical Overtone Structures

CLARINET		FRENCH HORN	
Frequency, Hz	Relative intensity, %	Frequency, Hz	Relative intensity, %
400	36	100	3
800	0	200	22
1200	34	300	24
1600	9	400	44
2000	17	500	3
		600	2
		700	1
4000	3		

MFMcGraw-PHY 2425

Chap 17Ha - Superposition - Revised: 10/13/2012

Musical Sound Waveforms

MFMcGraw-PHY 2425

Chap 17Ha - Superposition - Revised: 10/13/2012

Musical Sound Frequency Spectrum

Chap 17Ha - Superposition - Revised: 10/13/2012

Fourier Analysis

http://www.austincc.edu/mmcgraw/simulations/fourier.jar

MFMcGraw-PHY 2425

Chap 17Ha - Superposition - Revised: 10/13/2012 44

Standing Wave Patterns

MFMcGraw-PHY 2425

Chap 17Ha - Superposition - Revised: 10/13/2012 4

Ringing Bell - Resonant Modes

523 Hz

1569 Hz

2532 Hz

2819 Hz

3104 Hz

3866 Hz

3957 Hz

4709 Hz

5323 Hz

5435 Hz

6137 Hz

6263 Hz

6571 Hz

6892 Hz

8002 Hz

8639 Hz

MFMcGraw-PHY 2425

Chap 17Ha - Superposition - Revised: 10/13/2012

7962 Hz

46

Guitar - Resonant Modes

MFMcGraw-PHY 2425

Chap 17Ha - Superposition - Revised: 10/13/2012

MFMcGraw-PHY 2425