Chapter 28

The Magnetic Field

Magnetic Field

- Force Exerted by a Magnetic Field
- Point Charge in a Magnetic Field
- Torques on Current Loops

Magnetic Field

Electric and Magnetic Field Analogy

Electric Dipole

Magnetic Dipole

Electric and Magnetic Dipole Fields

Electric field lines start on a positve charge and terminate on a negative charge.

Magnetic field lines have no beginning or end, they form continuous loops. There are no discrete magnetic charges.

Magnetic Monopoles Don't Exist

Isolated North and South poles cannot be created by breaking a bar magnet in half

Breaking a bar magnet in half will only create two smaller bar magnets. Each with a north and south pole.

Attraction by a Magnetic Field

In a uniform magnetic field there would be the magnetization of the object characterized by μ. But there would not be any attractive force.

The magnetic field gradient is required for the magnetic moment μ to experience an attractive force.
(b)

Copyright \& Addison Wesley Longman, Inc.

Attraction by a Magnetic Field

The magnetic moment of the jack knife acts as if it was a small bar magnet.

In each case the opposite poles
 are facing each other and the knife experiences an attractive force.

Never point at a magnet!

Force Exerted by a Magnetic Field on a Charged Particle

Force Exerted by a Magnetic Field

This force is sometimes called the Lorentz force

Right Hand Rule Yields Force Direction

In vector language this is
a vector cross product.

The direction is determined by turning the v vector into the B vector and the force direction proceeds in the direction that a right handed screw would move.

The Vector Cross Product

The Cross Product by Components

$$
\begin{aligned}
\boldsymbol{A} \times \boldsymbol{B} & =\text { vector } \\
& (\boldsymbol{A} \times \boldsymbol{B})_{z}=A_{x} B_{y}-A_{y} B_{x} \\
& (\boldsymbol{A} \times \boldsymbol{B})_{x}=A_{y} B_{z}-A_{z} B_{y} \\
& (\boldsymbol{A} \times \boldsymbol{B})_{y}=A_{z} B_{x}-A_{x} B_{z}
\end{aligned}
$$

Since A and B are in the $\mathrm{x}-\mathrm{y}$ plane $\mathrm{A} \times \mathrm{B}$ is along the z -axis.

$$
\boldsymbol{A} \times \boldsymbol{B}=(\boldsymbol{A} \times \boldsymbol{B})_{z}=A_{x} B_{y}-A_{y} B_{x}
$$

Memorizing the Cross Product

$\boldsymbol{A} \times \boldsymbol{B}=$ vector

$$
\begin{aligned}
& (\boldsymbol{A} \times \boldsymbol{B})_{z}=A_{x} B_{y}-A_{y} B_{x} \\
& (\boldsymbol{A} \times \boldsymbol{B})_{x}=A_{y} B_{z}-A_{z} B_{y} \\
& (\boldsymbol{A} \times \boldsymbol{B})_{y}=A_{z} B_{x}-A_{x} B_{z}
\end{aligned}
$$

The Units of Magnetic Field

$$
1 \operatorname{Tesla}(T)=1 \frac{N}{C(m / s)}=1 \frac{N}{A \bullet m}
$$

$$
1 \text { Gauss }=10^{-4} \mathrm{~T}
$$

$$
B_{\text {Earth }} \approx 0.5 G
$$

Range of Magnetic Field Strengths

Smallest value in a magnetically shielded room	$10^{\wedge}-14$ Tesla	$10^{\wedge}-10$ Gauss
Interstellar space	$10^{\wedge}-10$ Tesla	$10^{\wedge}-6$ Gauss
Earth's magnetic field	0.00005 Tesla	0.5 Gauss
Small bar magnet	0.01 Tesla	100 Gauss
Within a sunspot	0.15 Tesla	1500 Gauss
Small NIB magnet	0.2 Tesla	2000 Gauss
Big electromagnet	1.5 Tesla	15,000 Gauss
Strong lab magnet	10 Tesla	100,000 Gauss
Surface of neutron star	$100,000,000$ Tesla	$10^{\wedge} 12$ Gauss
Magstar	$100,000,000,000$ Tesla	$10^{\wedge} 15$ Gauss

Source: http://www.coolmagnetman.com/magflux.htm

Magnetic Force on Current Carrying Wires

Magnetic Force on Current Carrying Wires

The magnetic force on a wire segment is the sum of the magnetic force on all charge carrying particles in the wire.

$$
\begin{array}{ll}
\vec{F}=\left(q \vec{v}_{d} \times \vec{B}\right) n A L \\
I=n q v_{d} L & \vec{F}=I \vec{L} \times \vec{B}
\end{array}
$$

\vec{L} is a vector whose magnitude is the length of the wire segment and whose direction is that of the current.
\boldsymbol{B} and \boldsymbol{L} form a plane and \boldsymbol{F} is perpendicular to this plane

The wire segment feels a magnetic force perpendicular to the motion of the current and also perpendicular to the direction of the magnetic field.
\boldsymbol{B} and \boldsymbol{L} form a plane as long as they are not parallel.

$$
\begin{aligned}
& \vec{F}=I \vec{L} \times \vec{B} \\
& |F|=I L B \sin \theta \\
& \text { If } L \text { and } B \text { are parallel } \\
& \text { then } \sin \theta=0 \text { and } F=0
\end{aligned}
$$

Force on a Semicircular Wire Loop

Force on a Semicircular Wire Loop

You need to understand and be able to demonstrate this calculation.

Force on a Semicircular Wire Loop

$d \vec{F}=I d \vec{L} \times \vec{B}$

$d \vec{L}=d L \hat{u}=R d \theta \hat{u}$
$B=B_{0} \hat{k}$
$\theta=0 ; \quad \hat{u}=\hat{j}$
$\theta=\frac{\pi}{2} ; \hat{u}=-\hat{i}$

$\hat{u}=-\sin (\theta) \hat{i}+\cos (\theta) \hat{j}$

$$
\vec{F}=\int_{0}^{\pi} I R d \theta(-\sin (\theta) \hat{i}+\cos (\theta) \hat{j}) \times B_{0} \hat{k}
$$

$$
\begin{aligned}
& \vec{F}=\int_{0}^{\pi} \operatorname{IRd\theta (-\operatorname {sin}(\theta)\hat {i}+\operatorname {cos}(\theta)\hat {j})\times B_{0}\hat {k}} \overrightarrow{\vec{F}}=\int_{0}^{\pi} I R B_{0}(-\sin (\theta) \hat{i}+\cos (\theta \hat{j}) \times \hat{k} d \theta \\
& \vec{F}=I R B_{0} \int_{0}^{\pi}(-\sin (\theta) \hat{i}) \times \hat{k} d \theta+I R B_{0} \int_{0}^{\pi} \cos (\theta) \hat{j} \times \hat{k d} \theta \\
& \vec{F}=I R B_{o} \hat{j} \int_{0}^{\pi} \sin (\theta) d \theta+I R B_{0} \hat{i} \int_{0}^{\pi} \cos (\theta) d \theta \\
& \vec{F}=I R B_{0} \hat{j}(2)+I R B_{0} \hat{i}(\theta) \\
& \vec{F}=I(2 R) B_{0} \hat{j}
\end{aligned}
$$

Motion of a Point Charge in a Magnetic Field

This is a central acting force that gives rise to cyclotron motion.

This is an example of a centripetal force.

The magnetic force can't change the energy of the particle because it can do no work. Why?

Motion of a Point Charge in a Magnetic Field

This is a central acting force that gives rise to cyclotron motion.

$$
\begin{aligned}
& F=m a \\
& q v B=m \frac{v^{2}}{r} \\
& r=\frac{m v}{q B} \\
& \begin{array}{ll}
\times & T=\frac{2 \pi r}{v}=\frac{2 \pi(m v / q B)}{v} \\
\times & T=\frac{2 \pi m}{q B}
\end{array} \\
& \times \times \\
& \omega \text { is independent of velocity } \\
& f=\frac{1}{T}=\frac{q B}{2 \pi m} \\
& \omega=2 \pi f=\frac{q}{m} B
\end{aligned}
$$

$\omega=$ Cyclotron frequency

Spiral Motion in a Magnetic Field

The component of the particle velocity in the direction of the Bfield experiences no magnetic force.

(b)

For a random velocity orientation the result is spiral motion.

Applications

Velocity Selector - Wein Filter

Objective: If the electric and magnetic forces are balanced (i.e. equal and opposite) then the charged particle's trajectory will be a straight line.

To simplify the design and the mathematics v, B and E are all perpendicular to each other.

Velocity Selector - Wein Filter

$$
\begin{aligned}
& F_{M}=F_{E} \\
& q v B=q E \\
& v=\frac{E}{B}
\end{aligned}
$$

Answer: Since E is in the numerator adjusting this variable will yield linear operation. In addition, E can be changed by simply changing the voltage on the plates.

To be useful the filter needs to be adjustable. Which is easier to adjust: electric field? magnetic field?

Apparatus works equally well for positive or negative charges

Apparatus for q / m Measurements

Geometry for Electron Measurements

The Mass Spectrometer

No change in kinetic energy

Increase in kinetic energy

The Mass Spectrometer

$$
\begin{aligned}
& \Delta U_{E}=\Delta K E \\
& q \Delta V=\frac{1}{2} m v^{2} \longleftarrow \text { Dcceleration } \\
& F=q v B=\frac{m v^{2}}{r} \longleftarrow \text { Deflection } \\
& v^{2}=\frac{r^{2} q^{2} B^{2}}{m^{2}} \\
& \frac{1}{2} m v^{2}=\frac{1}{2} m\left(\frac{r^{2} q^{2} B^{2}}{m^{2}}\right)=q \Delta V \\
& \frac{q}{m}=\frac{2 \Delta V}{B^{2} r^{2}}
\end{aligned}
$$

Caution: Always use is $\Delta \mathrm{V}$ for the potential difference and v for the velocity inside the deflection region.

The Cyclotron

MRI Machine Characteristics

- Several hundred miles of special superconducting wire windings.
- Approximately 400 amps flows through the windings to produce the magnetic field.
- MRI machines are made of superconducting wire, which is cooled to 4.2 K (-268° Celsius) using several thousand liters of liquid helium.
- Refilling the Helium in a quenched magnet costs between $\$ 10 \mathrm{~K}$ and $\$ 20 \mathrm{~K}$.
- To achieve the required magnetic field strength, electrical current is sent through the windings. Due to the superconductive nature of the wire there is negligible power loss, so once at full field strength, the system is disconnected from the power source.
- An MRI machine IS ALWAYS ON. A strong magnetic field is always present near the machine.

Metal Hungry MRI Machines

Typical Magnetic Field Strengths
1.5 T to 3.5T
$15,000 \mathrm{G}$ to $35,000 \mathrm{G}$

Superconducting Dipole Magnet

Collars used to hold coils in place

Superconducting Accelerator Magnets

Figure 1. Magnet conceptual designs: (a) Tevatron; (b) RHIC; (c) HERA; (d) CBA Two-in-one (e) SSC; (f) LHC; (g) LBL's D19. Black areas are the coil cross sections, shaded areas are the collars or support spacers, $\mathrm{I}=$ thermal insulation, $\mathrm{Y}=$ yoke, $\mathrm{S}=$ space, $\mathrm{B}=$ block, $\mathrm{R}=$ ring.

SC Accelerator Magnet Parameters

Table 1. Parameters of accelerator magnets. $I_{q}=$ approximate average conductor limited current; $B_{q}=$ average short sample central field. For the inner layer: $B_{m x}=$ local maximum field on conductors; $n_{s}=$ number of strands; $d_{s}=$ diameter of strands; $R_{C u}=$ copper-tosuperconductor ratio; $j_{C_{u}}=$ current density in nonmatrix copper; $\alpha=$ instability factor defined in text; and $n_{q}=$ approximate average number of quenches to reach conductor limit.

	$\begin{gathered} \text { len } \\ \mathrm{m} \end{gathered}$	bore cm	$\begin{gathered} T \\ \mathrm{deg} \end{gathered}$	$\begin{aligned} & I_{q} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & B_{q} \\ & \hline \end{aligned}$	$\begin{gathered} \hline B_{m x} \\ \mathrm{~T} \end{gathered}$	$\begin{aligned} & n_{s} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & d_{s} \\ & d_{s} \end{aligned}$	$\begin{gathered} R_{C_{u}} \\ \mathrm{~A} / \mathrm{mm}^{2} \end{gathered}$	$\begin{gathered} j_{\mathrm{Cu}} \\ \mathrm{kA}^{2} / \mathrm{mm}^{3} \end{gathered}$	α	n_{q}
Tevatron	6.1	7.6	4.8	4840	4.8	5.4	23	0.68	1.8	1248	. 12	4
HERA	8.8	7.5	4.5	6400	5.9	6.2	24	0.84	1.8	1036	. 1	0.5
Isabelle	4.5	13.0	4.6	4625	5.0	5.7	96	0.30	1.2	2142	.29*	40
CBA	4.5	13.0	4.6	4100	5.3	5.5	23	0.68	1.8	1057	. 09	0.5
RHIC	9.5	8.0	4.6	7500	4.6	5.2	30	0.65	2.2	1427	. 18	1.5
SSC4	15.2	4.0	4.4	6700	6.7	7.0	23	0.81	1.3	1633	. 19	3
SSC5	15.2	5.0	4.4	7300	7.3	7.7	30	0.81	1.5	1186	. 11	1
LHC	1.0	5.0	1.8	15090	10.0	10.3	26	1.29	1.6	1050	. 15	40
LHC	1.0	5.0	4.2	11930	8.1	8.4	26	1.29	1.6	830	. 09	5
D19	1.0	5.0	1.8	9800	10.1	10.6	30	0.81	1.5	1593	. 2	8
D19	1.0	5.0	4.2	6910	7.6	8.0	30	0.81	1.5	1123	. 1	1
SSC quad	5.2	4.0	4.4	8400	-	6.5	30	0.65	1.8	1829	. 25	8

* Since the Isabelle braid was solder filled, α was calculated using the cable thickness $(.8 \mathrm{~mm})$ in place of the strand diameter d_{s} for the surface-to-volume ratio.

The Current Loop and Its Interactions with a Uniform Magnetic Field

The Current Loop

The current loop is a closed mathematical curve, C. It can be traversed in two directions: clockwise or counter clockwise. The curve encloses a two-sided surface S . The path shown below traverses the curve in the counter clockwise direction, when viewed from above. For this traversal direction the normal vector associated with the surface points up.

A right handed rule can be employed to determine the direction of the surface normal.

Magnetic Forces on the Current Loop

The current in the sides of the loop of length "b" are parallel to the direction of the magnetic field.

Hence they experience no magnetic force.

Looking Along the Current Loop, Perpendicular to the Magnetic Field

Both wire segments of length "a" experience a magnetic forces of equal and opposite magnitude.

$$
\begin{aligned}
& F_{1}=F_{2}=I a B \\
& \tau=F_{2} b \sin \theta=I a B b \sin \theta=I A B \sin \theta
\end{aligned}
$$

$\tau=$ NIAB $\sin \theta \quad$ in the case of N identical loops

There is no translation of the current loop - only a torque, or twisting motion - because the magnetic field is uniform.

The Magnetic Moment

$$
\begin{aligned}
& \qquad \vec{\mu}=N I A \hat{n} \longleftarrow \text { Valid for any shape loop } \\
& \tau=\mu B \sin \theta \\
& \text { The net effect on a current loop } \\
& \text { in a uniform magnetic field is } \\
& \text { that it experiences a torque. } \\
& \text { The magnetic moment wants to } \\
& \text { align itself with the direction } \\
& \text { of the magnetic field. }
\end{aligned}
$$

Commercial Application - Current Loop

APPLICATIONS

- Barcode scanners
- Laser printer
- Endoscopy/confocal microscopy
- Medical Imaging
- Optical Sensing
- Laser pointing - Steering of laser beams

Lemoptix MEMS Scanning Micromirror Technology

Commercial Application - Current Loop

Achievable performance range

Actuation	1D (1 axis) or 2D (2 axis)
Micromirror size	Up to 6 mm
Scanning angle	Up to 60° (optical)
Light reflection	$>90 \%$ in visible and IR
Shock resistance	$>2000 \mathrm{~g}$
Actuation voltage	$<5 \mathrm{~V}$
Resonant Frequency	From 500 Hz to 70 kHz
Static actuation	From fix steps to 400 Hz
Consumption	From 0.1 mW to 100 mW
Chip size	Down to $3 \mathrm{~mm} \times 3.5 \mathrm{~mm}$

Current Loop in a Magnetic Field

Low Energy:
Aligned with field

Work has to be done to reorient the magnetic moment from its aligned orientation to an anti-aligned orientation.

Current Loop in a Magnetic Field

Current Loop in a Magnetic Field

$\Delta U=-\mu B(\cos \theta-1)$
From $\theta=0$ to $\theta=\pi$

$$
\Delta U=2 \mu B
$$

$U=-\mu B(\cos \theta-1)+U_{0}$
Anticipating Quantum Mechanics
 we define $U\left(\theta=90^{\circ}\right)=0$

$$
\begin{array}{lr}
U\left(90^{\circ}\right)=-\mu B\left(\cos \left(90^{\circ}\right)-1\right)+U_{0}=0 & \\
\quad \therefore U_{0}=-\mu B & \\
U(\theta)=-\mu B \cos \theta & U=-\vec{\mu} \bullet \vec{B} \\
U(\theta)=-\vec{\mu} \cdot \vec{B} &
\end{array}
$$

Magnetic Moment of a Rotating Charged Disk

Magnetic Moment of a Rotating Charged Disk

A rotating charged disk can be treated as a collection of concentric current loops. Each loop has a magnetic moment. The sum of all these magnetic moments is the magnetic moment of the disk.

Rotating Charged Disk

The infinitesimal magnetic moment $\mathrm{d} \mu$ is due to the rotation of the charge in infinitesimal area $2 \pi \mathrm{RdR}$. The area of this loop is $\pi \mathrm{R}^{2}$

$$
\begin{aligned}
& d \mu=\pi R^{2} d I \\
& d I=\frac{d q}{T}=\frac{\omega}{2 \pi} d q=\frac{\omega}{2 \pi} \sigma d A \\
& \quad d A=2 \pi R d R \\
& d I=\frac{\omega}{2 \pi} \sigma 2 \pi R d R=\omega \sigma R d R
\end{aligned}
$$

Rotating Charged Disk

$$
d \mu=\pi R^{2} \omega \sigma R d R=\pi \omega \sigma R^{3} d R
$$

$$
\begin{aligned}
& \mu=\int_{0}^{a} \pi \omega \sigma R^{3} d R=\pi \omega \sigma \int_{0}^{a} R^{3} d R \\
& \mu=\frac{1}{4} \pi \omega \sigma a^{4}=\frac{\omega a^{2}}{4} \sigma \pi a^{2}=\frac{\omega a^{2}}{4} Q
\end{aligned}
$$

This can be cast into a more general form by remembering

$$
\begin{aligned}
& \vec{L}=I \vec{\omega}=\frac{1}{2} m a^{2} \vec{\omega} \\
& \vec{\mu}=\frac{Q \vec{\omega} a^{2}}{4}=\frac{Q}{2 m} \frac{m a^{2}}{2} \vec{\omega}=\frac{Q}{2 m} \vec{L}
\end{aligned}
$$

The "I" is the moment of inertia. The " Q / m " ratio is not a real charge to mass ratio.

Extra Slides

MFMcGraw-PHY 2426
Ch28a-Magnetic Field - Revised 10/03/2012

Superposition of Magnetic Fields

Fig. 13.10

Magnetic \& Geographic Confusion

Copyright © Addison Wesley Longman, Inc.

