Chapter 29

Sources of the Magnetic Field

Sources of the Magnetic Field

- Magnetic Field of Moving Point Charges
- Magnetic Field of Currents - Biot-Savart Law
- Gauss's Law for Magnetism
- Ampere's Law
- Magnetism in Matter

Magnetic Field Caused by a Moving Charge

$$
\vec{B}=\frac{\mu_{0}}{4 \pi} q \frac{\vec{v} \times \hat{r}}{r^{2}}
$$

This formula gives the magnetic field at the location $\mathrm{P} \underline{\text { at the }}$ point in time when the charges particle is a distance r away.

Moving Charge Magnetic Field Example

$$
\begin{aligned}
& \vec{B}=-\frac{\mu_{0}}{4 \pi} q \frac{\left(1.8 \times 10^{3}\right) \hat{k}}{25} \\
& \vec{B}=-10^{-7}\left(4.5 \times 10^{-6}\right) \frac{\left(1.8 \times 10^{3}\right) \hat{k}}{25} \\
& \vec{B}=-\frac{(1.8)(4.5) \times 10^{-10}}{25} \hat{k} \\
& \vec{B}=-3.24 \times 10^{-11} T \hat{k} \\
& \vec{r}=4 \hat{i}-3 \hat{j} \\
& r=\sqrt{4^{2}+3^{2}}=5
\end{aligned}
$$

$\hat{r}=\frac{\vec{r}}{r}=\frac{4}{5} \hat{i}-\frac{3}{5} \hat{j}$

Magnetic Units

The permeability is a property of matter related to the ease with which the substance can be magnetized.
μ_{0} is the permeability of free space.

$$
\begin{gathered}
\mu_{0}=4 \pi 10^{-7} \mathrm{~T}-\mathrm{m} / \mathrm{A}=4 \pi 10^{-7} \mathrm{~N} / \mathrm{A}^{2} \\
\frac{\mu_{0}}{4 \pi}=10^{-7} \frac{\mathrm{~N}}{\mathrm{~A}^{2}}
\end{gathered}
$$

This is so easy to remember that we will try to keep this combination of factors together whenever possible.

Magnetic Field of Currents - Biot-Savart Law

$$
\begin{gathered}
q \vec{v} \Rightarrow I d \vec{L} \\
\vec{B}=\frac{\mu_{0}}{4 \pi} I \frac{d \vec{L} \times \hat{r}}{r^{2}}
\end{gathered}
$$

This is a steady state field because even though there is charge movement the current is constant in time.

Ring Current Magnetic Field at Center

Ring Current Magnetic Field at Center

$$
\begin{aligned}
& \vec{B}=\frac{\mu_{0}}{4 \pi} I \frac{d \vec{L} \times \hat{r}}{r^{2}} \\
& d B_{z} \hat{k}=\frac{\mu_{0}}{4 \pi} \frac{I d L \sin \theta}{R^{2}} \hat{k} \\
& B_{z}=\frac{\mu_{0}}{4 \pi} \frac{I}{R^{2}} \oint d L \\
& B_{z}=\frac{\mu_{0}}{4 \pi} \frac{I}{R^{2}} 2 \pi R=\frac{\mu_{0} I}{2 R}
\end{aligned}
$$

$d \vec{L} \times \hat{r}=d L \sin \theta \hat{k}$

$$
\theta=90^{\circ} \Rightarrow \sin \theta=1
$$

$$
d \vec{L} \times \hat{r}=d L \hat{k}
$$

Ring Current Magnetic Field on Axis

Ring Current Magnetic Field on Axis

$$
\begin{aligned}
& \vec{B}=\frac{\mu_{0}}{4 \pi} I \frac{d \vec{L} \times \hat{r}}{r^{2}} \\
& |d \vec{B}|=d B=\frac{\mu_{0}}{4 \pi} \frac{I|d \vec{L} \times \hat{r}|}{r^{2}}=\frac{\mu_{0}}{4 \pi} \frac{I d L}{\left(z^{2}+R^{2}\right)} \\
& d B_{z}=d B \sin \theta=\frac{\mu_{0}}{4 \pi} \frac{I d L}{\left(z^{2}+R^{2}\right)}\left(\frac{R}{\sqrt{z^{2}+R^{2}}}\right) \\
& d B_{z}=\frac{\mu_{0}}{4 \pi} \frac{I R d L}{\left(z^{2}+R^{2}\right)^{3 / 2}}
\end{aligned}
$$

$B_{z}=\oint d B_{z}=\oint \frac{\mu_{0}}{4 \pi} \frac{I R d L}{\left(z^{2}+R^{2}\right)^{3 / 2}}=\frac{\mu_{0}}{4 \pi} \frac{I R}{\left(z^{2}+R^{2}\right)^{3 / 2}} \oint d L$
$B_{z}=\frac{\mu_{0}}{4 \pi} \frac{2 \pi R^{2} I}{\left(z^{2}+R^{2}\right)^{3 / 2}}$
Notice that the field is proportional to I and that the factor $\mu_{0} / 4 \pi$ is kept together despite the 2π above.

Ring Current Magnetic Field on Axis

$$
B_{z}=\frac{\mu_{0}}{4 \pi} \frac{2 \pi R^{2} I}{\left(z^{2}+R^{2}\right)^{3 / 2}}
$$

Far away from the loop the field takes on the form of a dipole field.

$$
\mathrm{Z} \gg \mathrm{R}
$$

$B_{z}=\frac{\mu_{0}}{4 \pi} \frac{2 \pi R^{2} I}{z^{3}}=\frac{\mu_{0}}{4 \pi} \frac{2 \mu}{z^{3}}$
where $\mu=\pi R^{2} I$ is the magnetic moment

Ring Current Magnetic Field

Magnetic Field of Closely Spaced Rings

With the addition of a second current loop the magnetic field is becoming more uniform in the region of the center of the loops.

Magnetic Solenoid \& Bar Magnet

Current Loops

(c)

Bar Magnet

(b)

The fields are similar but you can't get access to the internal region of the bar magnet.

Magnetic Solenoid as Multiple Coils

Loop density $=\mathrm{n}=\mathrm{N} / \mathrm{L}=$ numbers of loops $/$ length of coil

Magnetic Solenoid Geometry

Magnetic Solenoid

$$
z_{2}-z_{1}=L \quad n=\frac{N}{L}
$$

In $d z$ there are ndz turns of current I $d i=n I d z$

$$
d B_{z}=\frac{\mu_{0}}{4 \pi} \frac{2 \pi R^{2} d i}{\left(z^{2}+R^{2}\right)^{3 / 2}}=\frac{\mu_{0}}{4 \pi} \frac{2 \pi R^{2} n I d z}{\left(z^{2}+R^{2}\right)^{3 / 2}}
$$

$$
B_{z}=\frac{\mu_{0}}{4 \pi} 2 \pi R^{2} n I \int_{z_{1}}^{z_{2}} \frac{d z}{\left(z^{2}+R^{2}\right)^{3 / 2}} \longleftarrow \text { Use a trig substitution: } \mathrm{z}=\mathrm{R} \tan \theta
$$

B-field at the center of the coil at $\mathrm{z}=0$.

Solenoid Magnetic Field

Why is the field strength at the end of the coil equal to onehalf the interior value?

Magnetic Field of Current Segment

This is a calculation for a general position relative to the current segment but we will be using it for highly symmetric situatiuons.

Magnetic Field of Current Segment

$$
d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I d \vec{L} \times \hat{r}}{r^{2}}
$$

$d \vec{L} \times \hat{r}$ is out of the paper
$d \vec{L}=d x \hat{i} ; d \vec{L} \times \hat{r}=d L \sin \varphi \hat{k}$
$d B=\frac{\mu_{0}}{4 \pi} \frac{I}{r^{2}} \sin \varphi d x \hat{k}=\frac{\mu_{0}}{4 \pi} \frac{I}{r^{2}} \hat{k} \sin \theta d x \quad d \vec{L} \times \hat{r}=\sin \varphi d x \hat{k}$
Need to relate r, x, and θ
$x=$ Rtan θ
$d x=R d(\tan \theta)=R \sec ^{2} \theta d \theta$
$\sec \theta=\frac{1}{\cos \theta}=\frac{r}{R}$
$d x=R \frac{r^{2}}{R^{2}} d \theta=\frac{r^{2}}{R} d \theta$
$d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I}{r^{2}} \cos \theta \frac{r^{2}}{R} d \theta \hat{k}$

Magnetic Field of Current Segment

$$
\begin{aligned}
d \vec{B} & =\frac{\mu_{o}}{4 \pi} \frac{I}{r^{2}} \cos \theta \frac{r^{2}}{R} d \theta \hat{k} \\
\vec{B} & =\frac{\mu_{o}}{4 \pi} \frac{I \hat{k}}{R} \int_{\theta_{1}}^{\theta_{2}} \cos \theta d \theta=\left.\frac{\mu_{0}}{4 \pi} \frac{I}{R} \sin \theta\right|_{\theta_{1}} ^{\theta_{2}} \\
\vec{B} & =\frac{\mu_{0}}{4 \pi} \frac{I}{R}\left(\sin \theta_{2}-\sin \theta_{l}\right) \hat{k}
\end{aligned}
$$

For an infinitely long wire

$$
\begin{aligned}
& \theta_{1} \rightarrow-\frac{\pi}{2} ; \theta_{2} \rightarrow+\frac{\pi}{2} \\
& \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I}{R}(+1-(-1)) \hat{k}=\frac{\mu_{0}}{4 \pi} \frac{2 I}{R} \hat{k}
\end{aligned}
$$

Current Carrying Loop as Line Segments

$$
\begin{aligned}
& \vec{B}=\frac{\mu_{o}}{4 \pi} \frac{I}{R}\left(\sin \theta_{2}-\sin \theta_{I}\right) \hat{k} \\
& \theta_{1}=-\pi / 4 ; \quad \theta_{2}=+\pi / 4 \\
& \sin (-\pi / 4)=-\sqrt{2} / 2 ; \sin (+\pi / 4)=\sqrt{2} / 2 \\
& \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I}{R}\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\right) \hat{k}=\frac{\mu_{0}}{4 \pi} \frac{I \sqrt{2}}{R} \hat{k} \\
& \text { Each segments make an } \\
& \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{4 I \sqrt{2}}{R} \hat{k} \\
& \text { identical contribution }
\end{aligned}
$$

B-Field: Infinite Current Carrying Wire

$$
\vec{B}=\frac{\mu_{0}}{4 \pi} \frac{2 I}{R} \hat{k}
$$

Magnetic Field from Two Infinite Current Carrying Wires

Magnetic Field from Two Infinite Current Carrying Wires

$$
\vec{B}=\frac{\mu_{0}}{4 \pi} \frac{2 I}{R} \hat{k}
$$

Force between Current Carrying Wires

$$
\begin{array}{ll}
d \vec{F}_{2}=I_{2} d \vec{L}_{2} \times \vec{B}_{1} & \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{2 I}{R} \hat{k} \\
d F_{2}=I_{2}\left(\frac{\mu_{0} I_{1}}{2 \pi R}\right) d L_{2} & \\
\frac{d F_{2}}{d L_{2}}=\frac{\mu_{0} I_{1} I_{2}}{2 \pi R}=2 \frac{\mu_{0}}{4 \pi} \frac{I_{1} I_{2}}{R} &
\end{array}
$$

Current Carrying Wire Examples

MAG FIELD LINES
COMING OUT OF THE PAGE

MAGNET FIELD
LINES GOING
into The page
USE \otimes mstead of \oplus to arrid cm from with positive charges.

Current - Same Direction
cancellation.
of FiELD LINES
THE WIRE
TitS REDUCES THE "PRESSURE"

LORENTZ FORCE ANALYSIS

0	\otimes	0	x	
0	\otimes	0	x	
\longrightarrow	0	\otimes	0	x
0	$凶$	0	x	
0	\otimes	0	x	

Current - Opposite Direction

LORENZ FORCE

MAGNETS FIELD
LINE REINFORCE
EACH OTHER IN
REGINA BETWEEN
THESE WIRES.
increase "magnetic pressure" CAUSES THE WIRES TO REPEL.

Field line analysis

Gauss's Law for Magnetism

Neither situation has the high degree of symmetry needed for the practical use of Gauss's Law for field calculation.

$$
\varphi_{E}=\oint_{S} \vec{E} \cdot d \vec{A}=\frac{Q_{i \text { iside }}}{\varepsilon_{0}}
$$

$$
\varphi_{B}=\oint_{S} \vec{B} \cdot d \vec{A}=0
$$

Ampere's Law

Ampere's Law

Ampere's Law does for magnetic field calculations what Gauss's Law does for electric field calculations.

$$
\oint_{C} \vec{B} \cdot d \vec{L}=\oint_{C} B_{t} d L=\mu_{0} I_{C}
$$

For practical use in the calculation of magnetic fields we need to be able to take the magnetic field out from under the integral.

$$
\oint_{C} B_{t} \cdot d L=B_{t} \oint_{C} d L
$$

Positive Direction for Path Integral

The right-hand rule aligns the curve direction with the direction of the current.

$$
\oint_{C} \vec{B} \cdot d \vec{L}=\oint_{C} B_{t} d L=\mu_{0} I_{C}
$$

$$
\oint_{C} B_{t} \cdot d L=B_{t} \oint_{C} d L
$$

The ability to take the magnetic field out from under the integral requires that a curve C be found on which the magnetic field is constant.

Current Density

$$
I=\int_{S} \vec{J} \cdot d \vec{A}=\int_{S} \vec{J} \cdot \hat{n} d A
$$

The current density plays for magnetism the same role that charge densities played for electric fields.

In some situations all the current is not contained within the curve C and current might be a function of position.

Positive Direction for Path Integral

Curve C is a mathematical object. It does not have any current flowing in it.

Application of Ampere's Law

$$
\begin{gathered}
\oint_{C} \vec{B} \cdot d \vec{L}=\oint_{C} B_{t} d L=\mu_{0} I_{C} \\
B_{t} \oint_{C} d L=B_{t} 2 \pi r=\mu_{0} I_{C} \\
B_{t}=\frac{\mu_{0} I_{C}}{2 \pi r}=\frac{\mu_{0}}{4 \pi} \frac{2 I}{r}
\end{gathered}
$$

The direction of the curve C is chosen so that the unit normal to the surface S is in the direction of the current I.

Magnetic Field Inside \& Outside

There is a need to coordinate the direction of the curve C and the direction of the current (current density).

$$
I=\int_{S} \vec{J} \cdot d \vec{A}=\int_{S} \vec{J} \cdot \hat{n} d A
$$

The reason is the desire to have the unit normal for the surface S point in the same direction as the current density J.

Magnetic Field Inside \& Outside

This problem can be divided into an internal and external part. The external part was already shown on page 36.

Magnetic Field Inside \& Outside

The curve C for the internal problem is shown above. The direction of the curve C is clockwise as viewed in the direction of the current.

$$
\begin{aligned}
& B_{t} \oint_{C} d L=B_{t} 2 \pi r=\mu_{0} \oint_{S} J \cdot \hat{n} d A \\
& B_{t} 2 \pi r=\mu_{0} J \oint_{S} d A=\mu_{0} J \pi r^{2}
\end{aligned}
$$

$$
B_{t}=\frac{\mu_{0} J \pi r^{2}}{2 \pi r}=\frac{\mu_{0} \pi r^{2}}{2 \pi r} \frac{I}{\pi R^{2}}=\frac{\mu_{0}}{4 \pi} \frac{2 I}{R^{2}} r
$$

Magnetic Field Inside \& Outside

$$
B_{t}=\frac{\mu_{0}}{4 \pi} \frac{2 I}{R^{2}} r \quad B_{t}=\frac{\mu_{0}}{4 \pi} \frac{2 I}{r}
$$

Toroidal Magnetic Field

$$
\begin{aligned}
& B_{t} \oint_{C} d L=B_{t} 2 \pi r=\mu_{0} I_{C} \\
& B_{t}=\frac{\mu_{0} I_{C}}{2 \pi r} \\
& \text { for } r<a, \quad I_{C}=0 \Rightarrow B_{t}=0 \\
& \text { for } a<r<b, \quad I_{C}=N I \Rightarrow B_{t}=\frac{\mu_{0} N I}{2 \pi r} \\
& \text { for } b<r, \quad I_{C}=0 \Rightarrow B_{t}=0
\end{aligned}
$$

Situations Where Ampere's Law Won't Work

Current might or might not be continuous.

In all these cases there isn't enough there is not enough symmetry to allow the magnetic field to be taken outside of the integral.

Magnetism in Matter

Magnetism in Matter

- Diamagnetism
- Paramagnetism
- Ferromagnetism
- Ferromagnetism
- Ferromagnetism

Magnetism in Matter

Magnetism in Matter

Diamagnetism

- Present in all materials but weak.
- Arises from orbital dipole moments induced by an applied magnetic field.
- Opposite direction of the applied field - decreases the external field.
- Only observed in materials with no permanent magnetic moments.

Paramagnetism

- Partial alignment of electron spins in metals or atomic or molecular moments
- No strong interaction among the magnetic moments
- Thermal motion randomizes the orientation of the magnetic moments.

Ferromagnetism

- Strong interaction between neighboring magnetic dipoles.
- High degree of alignment even in weak fields.
- May align at lower temperatures even in the absence of an external magnetic field.

Anti-Ferromagnetism

In antiferromagnets, the magnetic moments, usually related to the spins of electrons, align with neighboring spins, on different sublattices, pointing in opposite directions.

Antiferromagnetic order exists at sufficiently low temperatures and vanishes above a certain temperature, the Néel temperature.

Above the Néel temperature, the material is typically paramagnetic.

Ferrimagnetism

A ferrimagnetic material is one in which the magnetic moments of the atoms on different sublattices are opposed, as in antiferromagnetism.

In ferrimagnetic materials, the opposing moments are unequal and a spontaneous magnetization remains.

This happens when the sublattices consist of different materials or ions (such as Fe2+ and $\mathrm{Fe} 3+$).

Magnetic Susceptibility

Fig. 11.59 Variation of magnetic susceptibility with temperature for diamagnetic, paramagnetic, ferromagnetic, and antiferromagnetic substances. Transitions to paramagnetic behavior for ferromagnetic and antiferromagnetic substances occur at the Curie (T_{C}) and Neel (T_{N}) temperatures, respectively.

Magnetism in Matter

Simplistic model of atomic current loops all aligned with the axis of the cylinder

Internally the net current is zero due to the cancellation of current from neighboring atoms.

Amperian Current

Due to the internal cancellation of loop currents the net effect of all the current loops is only a surface current.

Incremental Slice of a Permeable Material

Define the magnetization M as the net magnetic dipole moment per unit volume

$$
\vec{M}=\frac{d \vec{\mu}}{d V}
$$

$$
d \mu=A d i
$$

$$
M=\frac{d \mu}{d V}=\frac{A d i}{A d L}=\frac{d i}{d L}
$$

Magnetization is the amperian current per unit length

Magnetic Susceptibility

$$
M=\frac{d i}{d L}
$$

Combining many of these small disks will form a cylinder which can be compared to a solenoid that has its current flowing around its periphery.

M plays the role of nI, where $n=N / L$, the loop density. For the B -field created in the solenoid $\mathrm{B}=\mathrm{nIL}$. By comparison

$$
B_{m}=\mu_{0} M
$$

Magnetic Susceptibility

$$
\begin{gathered}
\vec{B}=\vec{B}_{a p p}+\mu_{0} \vec{M} \\
\mu_{o} \vec{M}=\chi_{m} \vec{B}_{a p p} \\
\vec{B}=\vec{B}_{a p p}+\chi_{m} \vec{B}_{a p p}
\end{gathered}
$$

$$
\vec{B}=\vec{B}_{a p p}\left(1+\chi_{m}\right)=K_{m} \vec{B}_{a p p}
$$

K_{m} is the relative permeability

$$
K_{m}=\left(1+\chi_{m}\right) \quad \begin{array}{ll}
\mathrm{K}_{\mathrm{m}}>1 \text { Paramagnets } \\
\mathrm{K}_{\mathrm{m}}<1 \text { Diamagnets }
\end{array}
$$

Magnetic Susceptibility of Various Materials at $20^{\circ} \mathrm{C}$

Material	χ_{m}
Aluminum	2.3×10^{-5}
Bismuth	-1.66×10^{-5}
Copper	-0.98×10^{-5}
Diamond	-2.2×10^{-5}
Gold	-3.6×10^{-5}
Magnesium	1.2×10^{-5}
Mercury	-3.2×10^{-5}
Silver	-2.6×10^{-5}
Sodium	-0.24×10^{-5}
Titanium	7.06×10^{-5}
Tungsten	6.8×10^{-5}
Hydrogen $(1 \mathrm{~atm})$	-9.9×10^{-9}
Carbon dioxide $(1 \mathrm{~atm})$	-2.3×10^{-9}
Nitrogen $(1 \mathrm{~atm})$	-5.0×10^{-9}
Oxygen $(1 \mathrm{~atm})$	2090×10^{-9}

Extra Slides

