Chapter 31

Alternating Current Circuits

Alternating Current Circuits

- Alternating Current - Generator
- Wave Nomenclature \& RMS
- AC Circuits: Resistor; Inductor; Capacitor
- Transformers - not the movie
- LC and RLC Circuits - No generator
- Driven RLC Circuits - Series
- Impedance and Power
- RC and RL Circuits - Low \& High Frequency
- RLC Circuit - Solution via Complex Numbers
- RLC Circuit - Example
- Resonance

Generators

(b)

By turning the coils in the magnetic field an emf is generated in the coils thus turning mechanical energy into alternating (AC) power.

Generators

Rotating the Coil in a Magnetic Field Generates an Emf

- Examples: Gasoline generator
- Manually turning the crank
- Hydroelectric power

Generators

$$
\begin{aligned}
\varphi_{m} & =N B A \cos \theta \quad \theta=\omega t \\
\varphi_{m} & =N B A \cos \omega t \\
\mathcal{E} & =-\frac{d}{d t} \varphi_{m}=N B A \omega \sin \omega t \\
\mathcal{E} & =\varepsilon_{\text {peak }} \sin \omega t ; \quad \varepsilon_{\text {peak }}=N B A \omega
\end{aligned}
$$

Wave Nomenclature and RMS Values

Wave Nomenclature

Copyright © 2006 Paul G. Hewitt, printed courtesy of Pearson Education Inc., publishing as Addison Wesley.
$\mathrm{A}_{\text {peak-peak }}=\mathrm{A}_{\mathrm{p}-\mathrm{p}}=2 \mathrm{~A}_{\text {peak }}=2 \mathrm{~A}_{\mathrm{p}} ; \mathrm{A}_{\mathrm{p}}=\mathrm{A}_{\mathrm{p}-\mathrm{p}} / 2$

Shifting Trig Functions

$$
\begin{aligned}
& x=A\left\{\frac{\sin }{\cos }\right\}[\omega t-\varphi] \\
& x=A\left\{\frac{\sin }{\cos }\right\}\left[2 \pi \frac{t}{T}-\varphi\right] \\
& x=A \sin \left[\omega t-\frac{\pi}{2}\right] \\
& x=A\left(\sin \omega t \cos \frac{\pi}{2}-\sin \frac{\pi}{2} \cos \omega t\right) \\
& x=A(\sin \omega t(0)-(1) \cos \omega t) \\
& x=-A \cos \omega t
\end{aligned}
$$

The minus sign means that the phase is shifted to the right.

A plus sign indicated the phase is shifted to the left

Shifting Trig Functions

$$
\begin{aligned}
& \sin \left[\omega t-\frac{\pi}{2}\right]=0 \\
& \omega t-\frac{\pi}{2}=0 \\
& \omega t=\frac{\pi}{2} \\
& t=\frac{\pi}{2} \frac{1}{\omega} ; \quad \frac{1}{\omega}=\frac{T}{2 \pi} \\
& t=\frac{\pi}{2} \frac{T}{2 \pi}=\frac{T}{4}
\end{aligned}
$$

Root Mean Squared

The root mean squared (rms) method of averaging is used when a variable will average to zero but its effect will not average to zero.

Procedure

- Square it (make the negative values positive)
- Take the average (mean)
- Take the square root (undo the squaring operation)

Root Mean Squared Average

Average of a Periodic Function

$$
\begin{aligned}
& \langle V\rangle=V_{a v g}=\frac{1}{T} \int_{o}^{T} V(t) d t ; \quad V(t)=V_{p} \sin \omega t \\
& V_{a v g}=\frac{1}{T} \int_{o}^{T} V_{p} \sin \omega t d t=\frac{V_{p}}{\omega T} \int_{0}^{\omega T} \sin x d x=-\frac{V_{p}}{\omega T} \int_{\cos (0)}^{\cos (\omega T)} d(\cos x) \\
& V_{a v g}=-\frac{V_{p}}{\omega T}(1-1)=0
\end{aligned}
$$

Root Mean Squared

$$
\begin{gathered}
\left\langle V^{2}\right\rangle=\left(V^{2}\right)_{\text {avg }}=\frac{1}{T} \int_{o}^{T} V^{2}(t) d t ; \quad V(t)=V_{p} \sin \omega t \\
\left(V^{2}\right)_{\text {avg }}=\frac{V_{p}^{2}}{T} \int_{o}^{T} \sin ^{2} \omega t d t=\frac{V_{p}^{2}}{\omega T} \pi=\frac{V_{p}^{2}}{2} \\
\left(V^{2}\right)_{\text {avg }}=\frac{V_{p}^{2}}{2} \\
V_{\text {RMS }} \equiv \sqrt{\left(V^{2}\right)_{\text {avg }}}=\frac{1}{\sqrt{2}} V_{p}=0.707 V_{p}
\end{gathered}
$$

Root Mean Squared

$$
V_{R M S} \equiv \sqrt{\left(V^{2}\right)_{\text {avg }}^{\text {Root }}}=\frac{1}{\sqrt{2}} V_{p}=0.707 V_{p}
$$

The RMS voltage ($\mathrm{V}_{\text {RMS }}$) is the DC voltage that has the same effect as the actual AC voltage.

RMS Power

$$
\begin{aligned}
& P_{\text {avg }}=\frac{1}{2} V_{p} I_{p} \\
& \text { since } \quad V_{\text {RUS }}=\frac{V_{p}}{\sqrt{2}} \text { and } I_{\text {RUS }}=\frac{I_{p}}{\sqrt{2}} \\
& P_{\text {avg }}=\frac{1}{2}\left(\sqrt{2} V_{\text {RUS }}\right)\left(\sqrt{2} I_{\text {RUS }}\right) \\
& P_{\text {avg }}=V_{\text {RUS }} I_{\text {RUS }}
\end{aligned}
$$

The average AC power is the product of the DC equivalent voltage and current.

Resistor in an AC Circuit

Resistor in an AC Circuit

For the case of a resistor in an $A C$ circuit the V_{R} across the resistor is in phase with the current I through the resistor.

In phase means that both waveforms peak at the same time.

Resistor in an AC Circuit

$$
\begin{aligned}
& P(t)=I^{2}(t) R=\left(I_{p} \cos \omega t\right)^{2} R \\
& P(t)=I_{p}^{2} R \cos \omega t
\end{aligned}
$$

The instantaneous power is a function of time. However, the average power per cycle is of more interest.

$$
\begin{aligned}
& P_{\text {avg }}=\frac{1}{T} \int_{o}^{T} P(t) d t \\
& P_{\text {avg }}=\frac{1}{T} \int_{o}^{T} I_{p}^{2} R \cos ^{2} \omega t d t
\end{aligned}
$$

$P_{\text {avg }}=\frac{I_{p}^{2} R}{T} \int_{0}^{T} \cos ^{2} \omega t d t=\frac{I_{p}^{2} R}{\omega T} \pi=\frac{1}{2} I_{p}^{2} R=\left(\frac{I_{p}}{\sqrt{2}}\right)^{2} R=I_{R M S}^{2} R$

Inductors in an AC Circuit

Coils \& Caps in an AC Circuit

	Low Frequency	High Frequency
Capacitor	Open	Short
Inductor	Short	Open

Inductors in an AC Circuit

$\varepsilon_{\text {peak }} \cos \omega t=V_{L \text { peak }} \cos \omega t=L \frac{d I}{d t}$
$I=\frac{V_{L \text { peak }}}{L} \int \cos \omega t d t=\frac{V_{L \text { peak }}}{\omega L} \sin \omega t$

$I=I_{p} \sin \omega t=I_{p} \cos (\omega t-\pi / 2)$

For the case of an inductor in an AC circuit the V_{L} across the inductor is 90° ahead of the current I through the inductor.

Inductors in an AC Circuit

$I=I_{p} \sin \omega t=\frac{V_{L \text { peak }}}{\omega L} \cos (\omega t-\pi / 2)$
$I_{p}=\frac{V_{L \text { peak }}}{\omega L}=\frac{V_{L \text { peak }}}{X_{L}}$

$X_{L}=\omega L$
X_{L} is the inductive reactance

Average Power - Inductors

$P(t)=V_{L} I=\left(V_{L \text { peak }} \cos \omega t\right)\left(I_{p} \sin \omega t\right)$
$P(t)=V_{L \text { peak }} I_{p} \cos \omega t \sin \omega t$
$P_{\text {avg }}=\frac{1}{T} \int_{0}^{T} V_{L \text { peak }} I_{p} \cos \omega t \sin \omega t d t$

$P_{\text {avg }}=\frac{V_{L \text { peak }} I_{p}}{T} \int_{0}^{T} \cos \omega t \sin \omega t d t$
$P_{\text {avg }}=\frac{V_{L \text { peak }} I_{p}}{2 T} \int_{0}^{T} \sin 2 \omega t d t=0$

Inductors don't dissipate energy, they store energy.

Average Power - Inductors

Inductors don't dissipate energy, they store energy.

The voltage and the current are out of phase by 90°.

As we saw with Work, energy changed only when a portion of the force was in the direction of the displacement.

In electrical circuits energy is dissipated only if a portion of the voltage is in phase with the current.

Capacitors in an AC Circuit

Capacitors in an AC Circuit

$V_{C}=\varepsilon_{p} \cos \omega t=V_{C p} \cos \omega t$
$Q=V_{C} C=V_{C p} C \cos \omega t=Q_{p} \cos \omega t$
$I=\frac{d Q}{d t}=-\omega Q_{p} \sin \omega t=-I_{p} \sin \omega t$
$I=-\omega Q_{p} \sin \omega t=I_{p} \cos (\omega t+\pi / 2)$

For the case of a capacitor in an AC circuit the V_{C} across the capacitor is 90° behind the current I on the capacitor.

Capacitors in an AC Circuit

Electrical Transformers

Electrical Transformers

Electrical Transformers

EMFy

MFMcGraw-PHY 2426

Electrical Transformers

Electrical Transformers

Both coils see the same magnetic flux and the cross sectional areas are the same

$$
\begin{aligned}
& B=\mu_{0} n I \\
& \mu_{0} n_{1} I_{1}=\mu_{0} n_{2} I_{2} \\
& n_{1} I_{1}=n_{2} I_{2} \\
& I_{2}=\frac{n_{1}}{n_{2}} I_{1}
\end{aligned}
$$

$$
\frac{I_{1}}{I_{2}}=\frac{n_{2}}{n_{1}}=\frac{N_{2} / L}{N_{1} / L}=\frac{N_{2}}{N_{1}}
$$

Electrical Transformers

Conservation of Energy
Primary Power $=$ Secondary Power

$$
\begin{aligned}
& V_{\text {in }} I_{1}=V_{\text {out }} I_{2} \\
& \frac{V_{\text {out }}}{V_{\text {in }}}=\frac{I_{1}}{I_{2}}=\frac{N_{2}}{N_{1}} \\
& V_{\text {out }}=\frac{N_{2}}{N_{1}} V_{\text {in }}
\end{aligned}
$$

Induced voltage/loop
More loops => more voltage
Voltage steps up but the current steps down.

LC and RLC Circuits Without a Generator

LC Circuit - No Generator

To start this circuit some energy must be placed in it since there is no battery to drive the circuit. We will do that by placing a charge on the capacitor

Since there is no resistor in the circuit and the resistance of the coil is assumed to be zero there will not be any losses.

LC Circuit - No Generator

Apply Kirchhoff's rule

$$
\begin{aligned}
& L \frac{d I}{d t}+\frac{Q}{C}=0 \\
& \text { Since } I=d Q / d t \\
& L \frac{d^{2} Q}{d t^{2}}+\frac{Q}{C}=0 \\
& \frac{d^{2} Q}{d t^{2}}=-\frac{1}{L C} Q \\
& \omega_{R}=\frac{1}{\sqrt{L C}}
\end{aligned}
$$

$$
\frac{d^{2} Q}{d t^{2}}=-\frac{1}{L C} Q \longleftarrow \begin{aligned}
& \text { This is the harmonic } \\
& \text { oscillator equation }
\end{aligned}
$$

LC Circuit - No Generator

$$
\begin{aligned}
& Q(t)=Q_{p} \cos \omega t \\
& I(t)=\frac{d Q}{d t}=-\omega Q_{p} \sin \omega t \\
& I(t)=-\omega Q_{p} \cos (\omega t+\pi / 2)
\end{aligned}
$$

The circuit will oscillate at the frequency ω_{R}. Energy will flow back and forth from the capacitor (electric energy) to
(a)

(b)
 the inductor (magnetic energy).

RLC Circuit - No Generator

Like the LC circuit some energy must initially be placed in this circuit since there is no battery to drive the circuit. Again we will do this by placing a charge on the capacitor

Since there is a resistor in the circuit now there will be losses as the energy passes through the resistor.

RLC Circuit - No Generator

Apply Kirchhoff's rule

$$
\begin{aligned}
& L \frac{d I}{d t}+I R+\frac{Q}{C}=0 ; \quad I=\frac{d Q}{d t} \\
& L \frac{d^{2} Q}{d t^{2}}+R \frac{d Q}{d t}+\frac{1}{C} Q=0
\end{aligned}
$$

Damping term - friction
"ma" term
The damping term causes a damping of the natural oscillations of the circuit.

RLC Circuit - No Generator

RLC Circuit - No Generator

$$
\begin{aligned}
& L \frac{d I}{d t}+R I+\frac{Q}{C}=0 \quad \text { Multiply by I } \\
& L I \frac{d I}{d t}+I^{2} R+\frac{Q I}{C}=0 \\
& \frac{d}{d t}\left[\frac{1}{2} L I^{2}\right]+I^{2} R+\frac{d}{d t}\left[\frac{1}{2} \frac{Q^{2}}{C}\right]=0 \\
& \frac{d}{d t}\left[\frac{1}{2} L I^{2}+\frac{1}{2} \frac{Q^{2}}{C}\right]=-I^{2} R
\end{aligned}
$$

The rate of change of the $=-\quad \begin{aligned} & \text { Power dissipated in the } \\ & \text { resistor }\end{aligned}$

Series RLC Circuit with Generator

We have already examined the components in this circuit to understand the phase relations of the voltage and current of each component

Now we will examine the power relationships

Series RLC Circuit with Generator

$$
\mathcal{E}(t)=\mathcal{E}_{\text {peak }} \sin \omega t=\varepsilon_{p} \sin \omega t
$$

Apply Kirchhoff's Loop rule to the circuit

$$
R I(t)+L \frac{d I(t)}{d t}+\frac{Q(t)}{C}=\mathcal{E}(t)
$$

$$
\begin{aligned}
\frac{d Q}{d t}= & I \Rightarrow Q(t)=Q_{o}+\int_{0}^{t} I\left(t^{\prime}\right) d t^{\prime} \\
& R I(t)+L \frac{d I(t)}{d t}+\frac{1}{C} \int_{0}^{t} I\left(t^{\prime}\right) d t^{\prime}=\mathcal{E}(t) ; \text { with } Q_{0}=0
\end{aligned}
$$

Series RLC Circuit with Generator

$$
R I(t)+L \frac{d I(t)}{d t}+\frac{1}{C} \int_{0}^{t} I\left(t^{\prime}\right) d t^{\prime}=\mathcal{E}(t)
$$

Steady state $\Rightarrow I(t)=I_{p} \sin \omega t$
$\frac{d I(t)}{d t}=\omega I_{p} \cos \omega t ; \int_{0}^{t} I\left(t^{\prime}\right) d t^{\prime}=\int_{0}^{t} I_{p} \sin \omega t^{\prime} d t^{\prime}=-\frac{I_{p}}{\omega} \cos \omega t$

$$
R I_{p} \sin \omega t+\omega L I_{p} \cos \omega t-\frac{1}{\omega C} I_{p} \cos \omega t=\varepsilon_{p} \sin \omega t
$$

Series RLC Circuit with Generator

$$
R I_{p} \sin \omega t+\omega L I_{p} \cos \omega t-\frac{l}{\omega C} I_{p} \cos \omega t=\varepsilon_{p} \sin \omega t
$$

Change all "cos" to "sin" by shifting the angle

$$
R I_{p} \sin \omega t+\omega L I_{p} \sin (\omega t+\pi / 2)+\frac{1}{\omega C} I_{p} \sin (\omega t-\pi / 2)=\mathcal{E}_{p} \sin \omega t
$$

The inductive voltage is
The capacitive voltage is 90° ahead of the current $\quad 0^{\circ}$ behind of the current

Impedance in a Series RLC Circuit

$\left.\left.R_{p} \sin \omega t+\varrho L\right)_{p} \sin (\omega t+\pi / 2)+\frac{1}{\omega C}\right)_{p} \sin (\omega t-\pi / 2)=\varepsilon_{p} \sin \omega t$
The coefficients are voltages

R	L	C
$R I_{p}$	$\omega L I_{p}$	$I_{p} / \omega C$
	$X_{L} I_{p}$	$X_{C} I_{p}$
	$X_{L}=\omega L$	$X_{C}=l / \omega C$

X_{L} is the inductive reactance.
X_{C} is the capacitive reactance.

Power in a Series RLC Circuit

Now we go back to the original equation and multiply by $I(t)=I_{p} \sin \omega t$ and integrate over one cycle: $0=>\mathrm{T}$

$$
R I_{p} \sin \omega t+\omega L I_{p} \cos \omega t-\frac{1}{\omega C} I_{p} \cos \omega t=\mathcal{E}_{p} \sin \omega t
$$

$$
\begin{gathered}
R I_{p}^{2} \int_{o}^{T} \sin \omega t d t+\omega L I{ }_{p}^{2} \int_{o}^{T} \sin \omega t \cos \omega t d t-\frac{I_{p}^{2}}{\omega C} \int_{o}^{T} \sin \omega t \cos \omega t d t=\varepsilon_{p} I_{p} \int_{o}^{T} \sin ^{2} \omega t d t \\
\int_{0}^{T} \sin ^{2} \omega t d t=\pi \quad \int_{0}^{T} \sin \omega t \cos \omega t d t=0
\end{gathered}
$$

Power in a Series RLC Circuit

$$
R I_{p}^{2}(\pi)+\omega L I_{p}^{2}(0)-\frac{I_{p}^{2}}{\omega C}(0)=E_{p} I_{p}(\pi)
$$

- Power is only dissipated in the resistor.
- The inductor stores energy in its magnetic field.
- The capacitor stores its energy in its electric field.

Series RLC Circuit with Generator

We have used this equation to demonstrate the behavior of the three types of components: R, L and C , but-

We still haven't solved the equation

$$
R I(t)+L \frac{d I(t)}{d t}+\frac{1}{C} \int_{0}^{t} I\left(t^{\prime}\right) d t^{\prime}=\mathcal{E}(t) ; \text { with } Q_{0}=0
$$

Before we actually solve it we need to introduce complex variables that will be used in the solution.

The RC Circuit

The RC Circuit - Low Freq

$$
\begin{aligned}
& R I_{p} \sin \omega t+\omega L I_{p} \cos \omega t-\frac{1}{\omega C} I_{p} \cos \omega t=\mathcal{E}_{p} \sin \omega t \\
& \quad \text { Let } \mathrm{L} \Rightarrow 0 \\
& R I_{p} \sin \omega t-\frac{1}{\omega C} I_{p} \cos \omega t=\mathcal{E}_{p} \sin \omega t \\
& \text { For } \omega t \simeq 0 ; \cos \omega t \simeq 1 ; \sin \omega t \simeq 0 \\
& -\frac{1}{\omega C} I_{p}=\mathcal{E}_{p}(0) \\
& I_{p}=0 \Rightarrow \text { Open circuit }
\end{aligned}
$$

The RC Circuit - High Freq

$$
\begin{aligned}
& R I_{p} \sin \omega t-\frac{1}{\omega C} I_{p} \cos \omega t=\varepsilon_{p} \sin \omega t \\
& \text { For } \omega \gg 1 / C R \\
& I_{p} \sin \omega t-\frac{1}{\omega C R} I_{p} \cos \omega t=\frac{\varepsilon_{p}}{R} \sin \omega t
\end{aligned}
$$

$I_{p} \sin \omega t=\frac{\mathcal{E}_{p}}{R} \sin \omega t$
$I_{p}=\frac{\mathcal{E}_{p}}{R} \quad \begin{aligned} & \text { At high frequency the } \\ & \text { cap acts as a short circuit. }\end{aligned}$

The RL Circuit

The RL Circuit - Low Freq

$$
\begin{aligned}
& R I_{p} \sin \omega t+\omega L I_{p} \cos \omega t-\frac{1}{\omega C} I_{p} \cos \omega t=\mathcal{E}_{p} \sin \omega t \\
& \text { Let } \mathrm{C}=>0 \\
& R I_{p} \sin \omega t+\omega L I_{p} \cos \omega t=\mathcal{E}_{p} \sin \omega t \\
& R I_{p} \sin \omega t=\mathcal{E}_{p} \sin \omega t \\
& R I_{p}=\mathcal{E}_{p} \\
& \begin{array}{l}
\text { At low frequency L acts } \\
\text { as a short circuit. }
\end{array}
\end{aligned}
$$

The RL Circuit - High Freq

$R I_{p} \sin \omega t+\omega L I_{p} \cos \omega t=\varepsilon_{p} \sin \omega t$
\quad For $\omega L \gg 1$
$\omega L I_{p} \cos \omega t=\varepsilon_{p} \sin \omega t$ multiply by cos ω t and average
$\omega L I_{p} \frac{1}{T} \int_{0}^{T} \cos ^{2} \omega t d t=\mathcal{E}_{p} \frac{1}{T} \int_{0}^{T} \sin \omega t \cos \omega t d t$
$\omega L I_{p} \pi=0$
$I_{p}=0 \Rightarrow$ Open circuit

Coils \& Caps in an AC Circuit

	Low Frequency	High Frequency
Capacitor	Open	Short
Inductor	Short	Open

Complex Numbers for AC Circuits

Complex Numbers for AC Circuits

The basic complex (imaginary) number is " i ."
To avoid confusion we replace " i " with " j "

$$
\begin{aligned}
& j=\sqrt{-1} \\
& j^{2}=j j=\sqrt{-1} \sqrt{-1}=-1 \\
& j^{3}=j j^{2}=j(-1)=-j \\
& j^{4}=j^{2} j^{2}=(-1)(-1)=+1 \\
& j^{5}=j j^{4}=j(+1)=j
\end{aligned}
$$

Complex Numbers for AC Circuits

Let a and b be real numbers
Then z is a complex number and z^{*} is the complex conjugate

$$
\begin{aligned}
& z=a+b j \\
& z^{*}=a-b j
\end{aligned}
$$

Complex Numbers for AC Circuits

The magnitude of z

$$
\begin{aligned}
& \operatorname{Magn}(z)=|z|=\sqrt{\left(z^{*}\right) z}=\sqrt{(a-b j)(a+b j)} \\
& |z|=\sqrt{a^{2}+a b j-a b j-j^{2} b^{2}} \\
& |z|=\sqrt{a^{2}+b^{2}}
\end{aligned}
$$

$$
\tan \theta=b / a ; \quad \theta=\tan ^{-1}(b / a)
$$

$$
z=|z|(\cos \theta+j \sin \theta)=|z| e^{j \theta}
$$

The exponential representation of a complex number will prove useful in
 solving the RLC differenial eqn.

Complex Numbers for AC Circuits

$$
z=|z|(\cos \theta+j \sin \theta)=|z| e^{j \theta}
$$

e ${ }^{j \theta}$ can be viewed as a rotation operator in a complex space

$$
\begin{aligned}
& e^{j \pi / 2}=j \\
& e^{j \pi}=-1 \\
& e^{j 3 \pi / 2}=-j \\
& e^{j 2 \pi}=e^{0}=+1
\end{aligned}
$$

Why Complex Numbers ?

(a,b)

Complex numbers simplify the solution of the integraldifferential equations encountered in series RLC AC circuits.

The use of complex numbers simplifies the lead-lag nature of the voltage and current in AC circuits.

Phasor Notation

This diagram depicts a series RLC circuit driven at a frequency that causes the inductive voltage to be greater than the capacitive voltage.

This gives the circuit an overall inductive nature - the current (in phase with V_{R}) is lagging the applied voltage $\mathrm{V}_{\text {app }}$.

All of these voltage vectors (phasors) have a common time component ($\mathrm{e}^{\mathrm{j} \omega \mathrm{t}}$) and so they all rotate at this common frequency. By suppressing this common rotation the concepts are easier to understand.

RLC Circuit Solution

$$
R I(t)+L \frac{d I(t)}{d t}+\frac{l}{C} \int_{0}^{t} I\left(t^{\prime}\right) d t^{\prime}=\varepsilon(t)
$$

$$
I(t)=I_{p} e^{j \omega t} \quad \text { The solution of a differential equation }
$$ begins with the selection of a trial solution $\frac{d I}{d t}=j \omega I_{p} e^{j \omega t}=j \omega I ;$

$\int I(t) d t=\frac{I}{j \omega}$

$$
\begin{aligned}
& R I+j \omega L I+\frac{I}{j \omega C}=E \\
& {\left[R+j \omega L-\frac{j}{\omega C}\right] I=E} \\
& R+j\left[\omega L-\frac{l}{\omega C}\right]=\frac{E}{I}
\end{aligned}
$$

RLC Circuit Solution

$$
\begin{aligned}
& \quad R+j\left[\omega L-\frac{l}{\omega C}\right]=\frac{F}{I} \\
& Z=R+j\left[\omega L-\frac{l}{\omega C}\right]=\frac{E}{I} \\
& Z=\frac{E}{I}
\end{aligned}
$$

The quantity Z is called the impedance and it is a complex variable
$\mathrm{E}=\mathrm{I} \mathrm{Z}$ is a complex version of Ohm's Law

Complex Impedance

$$
\begin{aligned}
& Z=R+j\left[\omega L-\frac{1}{\omega C}\right] \\
& |z|=\sqrt{\left(z^{*}\right) z}=\sqrt{R^{2}+\left[\omega L-\frac{1}{\omega C}\right]^{2}} \\
& \tan \theta=\frac{X_{L}-X_{C}}{R}=\frac{\omega L-\frac{1}{\omega C}}{R}
\end{aligned}
$$

Relative Voltage Phases - Inductive

Phases in an Inductive AC Circuit

Phases in a Capacitive AC Circuit

C only series

In capacitive circuit the current peaks first and the voltage peaks later.

RLC Series AC Circuit Example

$\mathrm{R}=250 \Omega, \mathrm{~L}=1.20 \mathrm{mH}$, $\mathrm{C}=1.80 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{p}}=120 \mathrm{v}, \mathrm{f}=60 \mathrm{~Hz}$

Determine the following:
(a.) X_{L} - Inductive reactance
(b.) X_{C} - Capacitive reactance
(c.) Z - Impedance

First calc: $\omega=2 \pi \mathrm{f}=2(3.14) 60=377 \mathrm{rad} / \mathrm{s}$

$$
\begin{aligned}
& X_{L}=\omega L=377\left(1.20 \times 10^{-3}\right)=0.452 \Omega \\
& X_{C}=1 / \omega C=1 /\left((377)\left(1.80 \times 10^{-6}\right)\right)=1474 \Omega
\end{aligned}
$$

$$
\begin{aligned}
& Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}=\sqrt{250^{2}+(0.452-1474)^{2}} \\
& Z=1495 \Omega
\end{aligned}
$$

$\mathrm{R}=250 \Omega, \mathrm{~L}=1.20 \mathrm{mH}$, $\mathrm{C}=1.80 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{p}}=120 \mathrm{v}, \mathrm{f}=60 \mathrm{~Hz}$

Determine the following:
(d.) θ - Phase angle

$$
\theta=\tan ^{-1}\left[\frac{X_{L}-X_{C}}{R}\right]=\tan ^{-1}\left[\frac{0.452-1474}{250}\right]=\tan ^{-1}\left[\frac{-1474}{250}\right]=-80.4^{0}
$$

$\mathrm{R}=250 \Omega, \mathrm{~L}=1.20 \mathrm{mH}$,
$\mathrm{C}=1.80 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{p}}=120 \mathrm{v}, \mathrm{f}=60 \mathrm{~Hz}$
Determine the following:
(g.) ω_{R} - Resonance frequency

$$
\omega_{R}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{\left(1.20 \times 10^{-3}\right)\left(1.80 \times 10^{-6}\right)}}=21.5 \mathrm{krad} / \mathrm{s}
$$

$$
f=\frac{\omega}{2 \pi}=\frac{21.5 \times 10^{3}}{6.28}=3.42 \mathrm{kHz}
$$

$\mathrm{R}=250 \Omega, \mathrm{~L}=1.20 \mathrm{mH}$,
$\mathrm{C}=1.80 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{p}}=120 \mathrm{v}, \mathrm{f}=60 \mathrm{~Hz}$
Determine the following:
(h.) $\mathrm{P}_{\text {avg }}$ - Average Power

$$
\begin{aligned}
& S=\frac{1}{2} V I^{*} \quad V=V_{p} e^{+j \omega t} \quad I=I_{p} e^{+j(\omega t+80.4)} \\
& S=\frac{1}{2}\left(V_{p} e^{+j \omega t}\right)\left(I_{p} e^{-j(\omega t+80.4)}\right)=\frac{1}{2} V_{p} I_{p} e^{+j(\omega t-\omega t-80.4)} \\
& S=\frac{1}{2} V_{p} I_{p} e^{-j(80.4)}=\frac{V_{p}}{\sqrt{2}} \frac{I_{p}}{\sqrt{2}} e^{-j(80.4)}=V_{R M S} I_{R M S} e^{-j(80.4)}
\end{aligned}
$$

Determine the following: (h.) $\mathrm{P}_{\text {avg }}-$ Average Power

$$
\begin{aligned}
& S=\frac{1}{2} V_{p} I_{p} e^{-j(80.4)}=\frac{V_{p}}{\sqrt{2}} \frac{I_{p}}{\sqrt{2}} e^{-j(80.4)}=V_{R M S} I_{R M S} e^{-j(80.4)} \\
& S=V_{R M S} I_{R M S}(\cos (80.4)-j \sin (80.4)) \\
& S=V_{R M S} I_{R M S} \cos (80.4)-j V_{R M S} I_{R M S} \sin (80.4) \\
& P_{\text {avg }}=V_{R M S} I_{R M S} \cos (80.4)
\end{aligned}
$$

$$
P_{\text {avg }}=84.3\left(56.7 \times 10^{-3}\right)(0.167)=0.803 \mathrm{~W}
$$

Voltages

$$
\begin{aligned}
& V_{R}=I_{R M S} R=\left(56.7 \times 10^{-3}\right)(250)=14.2 \mathrm{~V} \\
& V_{L}=I_{R M S} X_{L}=\left(56.7 \times 10^{-3}\right)(377)\left(1.20 \times 10^{-3}\right)=0.0265 \mathrm{~V} \\
& V_{C}=I_{R M S} X_{C}=\left(56.7 \times 10^{-3}\right) /\left(377\left(1.80 \times 10^{-6}\right)\right)=83.6 \mathrm{~V}
\end{aligned}
$$

$$
V=\sqrt{V_{R}^{2}+\left(V_{L}-V_{C}\right)^{2}}=\sqrt{(14.2)^{2}+(0.0256-83.6)^{2}}
$$

$$
V=84.8=V_{R M S}
$$

Resonance in a Series RLC Circuit

Fig. 8-2. Series Circuit Z, θ and Y as Functions of ω.

Resonance in a Series RLC Circuit

Power Transfer and Resonance

$L \frac{d^{2} Q}{d t^{2}}+R \frac{d Q}{d t}++\frac{Q}{C}=V_{p} \cos \omega t$

$$
\begin{aligned}
& P_{\text {avg }}=I_{R u s}^{2} R=\frac{V_{p}^{2}}{Z^{2}} R \\
& Z^{2}=R^{2}+\left[\omega L-\frac{1}{\omega C}\right]^{2} \\
& P_{\text {avg }}=\frac{\frac{V_{p}^{2}}{R}}{1+\left[\frac{\omega L}{R}\right]^{2}\left[\frac{\omega^{2}-\omega_{0}^{2}}{\omega^{2}}\right]^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \\
& I=I_{p} \cos (\omega t-\delta)=\frac{V_{p}}{|Z|} \cos (\omega t-\delta)
\end{aligned}
$$

Q Factor = Measure of Stored Energy

Resonance in a Series RLC Circuit

RLC Parallel Circuit

We're not covering this type of circuit

Extra Slides

Figure 1 Core-Type Transformer
When alternating voltage is applied to the primary winding, an alternating current will flow that will magnetize the magnetic core, first in one direction and then in the other direction. This alternating flux flowing around the entire length of the magnetic circuit induces a voltage in both the primary and secondary windings. Since both windings are linked by the same flux, the voltage induced per turn of the primary and secondary windings must be the same value and same direction. This voltage opposes the voltage applied to the primary winding and is called counter-electromotive force (CEMF).

