
Chapter 31

Alternating Current 

Circuits
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Alternating Current Circuits
• Alternating Current - Generator

• Wave Nomenclature & RMS

• AC Circuits: Resistor; Inductor; Capacitor

• Transformers - not the movie

• LC and RLC Circuits - No generator

• Driven RLC  Circuits - Series

• Impedance and Power

• RC and RL Circuits - Low & High Frequency

• RLC Circuit - Solution via Complex Numbers

• RLC Circuit - Example

• Resonance
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Generators

By turning the coils in the magnetic field an emf is 

generated in the coils thus turning mechanical energy into 

alternating (AC) power.
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Generators

Rotating the Coil in a Magnetic Field Generates an Emf

• Examples: Gasoline generator

• Manually turning the crank

• Hydroelectric power
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Generators

m

m

m

peak peak

φ = NBAcosθ     θ = ωt

φ = NBAcosωt

d
= -  φ   =  NBAωsinωt

dt

= sinωt;    = NBAω

ε 

ε ε ε
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Wave Nomenclature and RMS 

Values
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Wave Nomenclature

Apeak-peak = Ap-p = 2Apeak = 2Ap;   Ap = Ap-p /2
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ϕ
 

    
 

sin
x = A   ωt -

cos

{ } ϕ
 
  

sin t
x = A 2π -

cos T

( )
( )

  
π

2

π π

2 2

x =  A sin  ωt -

x = A sinωt cos - sin cosωt

x = A sinωt (0) - (1)cosωt

x = -Acosωt

The minus sign means that the 

phase is shifted to the right. 

A plus sign indicated the phase 

is shifted to the left

Shifting Trig Functions
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Shifting Trig Functions

π
ωt - = 0

2

π
ωt =

2

π 1 1 T
t =  ;        =

2ω ω 2π

π T T
t = =

2 2π 4

 
 
 

π
sin  ωt - = 0

2
Shifted Trig Functions
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Root Mean Squared

Procedure

• Square it (make the negative values positive)

• Take the average (mean)

• Take the square root (undo the squaring operation)

The root mean squared (rms) method of averaging is 

used when a variable will average to zero but its effect 

will not average to zero.
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Sine Functions
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MFMcGraw-PHY 2426 Chap31-AC Circuits-Revised: 6/24/2012 12

Average of a Periodic Function

∫

∫ ∫ ∫

T

avg p

o

cos(ωT)T  ωT
p p

avg p

o 0 cos(0)

p

avg

1
V = V = V(t)dt;    V(t) = V sinωt

T

V V1
V   =  V sinωtdt  =  sinxdx  =  -  d(cosx)

T  ωT ωT

V
V = - (1 - 1) = 0

ωT
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Root Mean Squared

( )

( )

( )

( )≡

∫

∫

T

2 2 2

p
avg

o

2 2 2T
p p p2  2

avg
o

2

p2

avg

2

RMS p p
avg

1
V = V = V (t)dt;    V(t) = V sinωt

T

V V V
V   =   sin  ωtdt  =    π  =  

T  ωT 2

V
V =

2

1
       V V = V = 0.707V

2
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Root Mean Squared

( )≡ 2

RMS p pavg

1
       V V = V = 0.707V

2

Root Square

Mean

The RMS voltage (VRMS )is the DC voltage that has the same 

effect as the actual AC voltage.
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RMS Power

The average AC power is the product of the DC equivalent 

voltage and current.

( )( )

avg p p

p p

RMS RMS

avg RMS RMS

avg RMS RMS

1
P = V I

2

V I
since      V =   and  I =

2 2

1
P = 2 V 2 I

2

P = V I
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Resistor in an AC Circuit
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Resistor in an AC Circuit

For the case of a resistor in an AC circuit the VR across the 

resistor is in phase with the current I through the resistor.

In phase means that both waveforms peak at the same time.



MFMcGraw-PHY 2426 Chap31-AC Circuits-Revised: 6/24/2012 18

Resistor in an AC Circuit

( )
2

2

p

2 2

p

P(t) = I (t)R = I cosωt R

P(t) = I Rcosωt

The instantaneous power is a function of time. However, the average 

power per cycle is of more interest.
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Inductors in an AC Circuit
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Coils & Caps in an AC Circuit
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Inductors in an AC Circuit

For the case of an inductor in an 

AC circuit the VL across the 

inductor is 900 ahead of the current 

I through the inductor.
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Inductors in an AC Circuit

( )L peak

p

L peak L peak

p

L

L

V
πI = I sinωt = cos ωt -

2ωL

V V
I = =

ωL X

X =ωL

XL is the inductive reactance
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Average Power - Inductors

( )( )

∫

∫

∫

L L peak p

L peak p

T

avg L peak p

0

T
L peak p

avg

0

T
L peak p

avg

0

P(t) = V I = V cosωt I sinωt

P(t) = V I cosωt sinωt

1
P = V I cosωt sinωtdt

T

V I
P = cosωt sinωtdt

T

V I
P = sin2ωtdt = 0

2T

Inductors don’t dissipate energy, they store energy.



MFMcGraw-PHY 2426 Chap31-AC Circuits-Revised: 6/24/2012 24

Average Power - Inductors

Inductors don’t dissipate energy, they 

store energy.

The voltage and the current are out of 

phase by 90o.

As we saw with Work, energy 

changed only when a portion of the 

force was in the direction of the 

displacement.

In electrical circuits energy is 

dissipated only if a portion of the 

voltage is in phase with the current.
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Capacitors in an AC Circuit
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Capacitors in an AC Circuit

( )

C p C p

C C p p

p p

p p

V = cosωt = V cosωt

Q = V C = V Ccosωt = Q cosωt

dQ
I = = -ωQ sinωt = -I sinωt

dt

πI = -ωQ sinωt = I cos ωt +
2

ε

For the case of a capacitor in an 

AC circuit the VC across the 

capacitor is 900 behind the current 

I on the capacitor.
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Capacitors in an AC Circuit

Cp Cp

p p Cp

C

C

V V
I =ωQ = ωCV = =

1 X
ωC

1
X =

ωC

XC is the capacitive reactance.
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Electrical Transformers
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Electrical Transformers



MFMcGraw-PHY 2426 Chap31-AC Circuits-Revised: 6/24/2012 30

Electrical Transformers
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Electrical Transformers
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Electrical Transformers
Both coils see the same magnetic flux and the cross sectional 

areas are the same

0

0 1 1 0 2 2

1 1 2 2

1

2 1

2

2

1 2 2

12 1 1

B =  µ nI

µ n I = µ n I

n I = n I

n
I = I

n

N
I n NL= = =

NI n N

L
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Electrical Transformers
Conservation of Energy

Primary Power = Secondary Power

in 1 out 2

out 1 2

in 2 1

2
out in

1

V I = V I

V I N
= =

V I N

N
V = V

N

Induced voltage/loop

More loops => more voltage

Voltage steps up but the current 

steps down. 
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LC and RLC Circuits Without a 

Generator
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LC Circuit - No Generator

To start this circuit some energy must be placed in it since 

there is no battery to drive the circuit. We will do that by 

placing a charge on the capacitor

Since there is no resistor in the circuit and the resistance of 

the coil is assumed to be zero there will not be any losses.



MFMcGraw-PHY 2426 Chap31-AC Circuits-Revised: 6/24/2012 37

LC Circuit - No Generator

Apply Kirchhoff’s rule

2

2

2

2

R

dI Q
L + = 0

dt C

dQ
Since  I =

dt

d Q Q
L + = 0

dt C

d Q 1
= - Q

dt LC

1
ω =

LC

This is the harmonic 

oscillator equation
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LC Circuit - No Generator

( )

p

p

p

Q(t) = Q cosωt

dQ
I(t) = = -ωQ sinωt

dt

πI(t) = -ωQ cos ωt +
2

The circuit will oscillate at the frequency 

ωR. Energy will flow back and forth 

from the capacitor (electric energy) to 

the inductor (magnetic energy).
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RLC Circuit - No Generator

Like the LC circuit some energy must initially be placed in 

this circuit since there is no battery to drive the circuit. Again 

we will do this by placing a charge on the capacitor

Since there is a resistor in the circuit now there will be losses 

as the energy passes through the resistor.
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RLC Circuit - No Generator

Apply Kirchhoff’s rule

2

2

dI Q dQ
L + IR + = 0 ;    I =

dt C dt

d Q dQ 1
L + R + Q = 0

dt dt C

“ma” term

Damping term - friction

Restoring force “kx”

The damping term causes a damping of the 

natural oscillations of the circuit.
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RLC Circuit - No Generator
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RLC Circuit - No Generator

  
  

   

 
 
 

2

2
2 2

2
2 2

dI Q
L + RI + = 0

dt C

dI QI
LI + I R + = 0

dt C

d 1 d 1 Q
LI + I R + = 0

dt 2 dt 2 C

d 1 1 Q
LI + = -I R

dt 2 2 C

The rate of change of the 

stored energy
=  - Power dissipated in the 

resistor

Multiply by I
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Series RLC Circuit with Generator

We have already examined the components in this circuit to 

understand the phase relations of the voltage and current of 

each component

Now we will examine the power relationships
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Series RLC Circuit with Generator

peak p(t) = sinωt = sinωtε ε ε

dI(t) Q(t)
RI(t)+ L + = (t)

dt C
ε

Apply Kirchhoff’s Loop rule to the circuit

⇒ ∫
t

o
0

dQ
= I     Q(t) = Q + I(t')dt'

dt

∫
t

0
0

dI(t) 1
RI(t)+ L + I(t')dt' = (t);  with Q = 0

dt C
ε
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Series RLC Circuit with Generator

ω

⇒

∫ ∫

p

t t p

p p0 0

Steady state  I(t) = I sinωt

IdI(t)
  =  I cosωt;   I(t')dt' =  I sinωt'dt'  =  - cosωt

 dt  ω

∫
t

0

dI(t) 1
RI(t)+ L + I(t')dt' = (t)

dt C
ε

p p p
p

1
RI sinωt +ωLI cosωt - I cosωt = sinωt

ωC
ε
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Series RLC Circuit with Generator

( ) ( )π π
p p p

p

1
RI sinωt +ωLI sin ωt + + I sin ωt - = sinωt

2 2ωC
ε

Change all “cos” to “sin” by shifting the angle

The inductive voltage is 

90o ahead of the current

The capacitive voltage is 

90o behind of the current

p p p
p

1
RI sinωt +ωLI cosωt - I cosωt = sinωt

ωC
ε
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Impedance in a Series RLC Circuit

( ) ( )π π
p p p

p

1
RI sinωt +ωLI sin ωt + + I sin ωt - = sinωt

2 2ωC
ε

p p p

L p C p

L C

R L C

 RI  ωLI  I ωC

 X I X I

X  = ωL X  = 1 ωC

The coefficients are voltages

The R and XL and XC values are 

called impedances. That is a 

generlized term for resistance 

since they all have units of ohms.

XL is the inductive reactance.

XC is the capacitive reactance.
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Power in a Series RLC Circuit
Now we go back to the original equation and multiply by

pI(t) = I sinωt and integrate over one cycle: 0 => T

∫ ∫ ∫ ∫
2T T T T
p2 2 2 2

p p p p

o o o o

I
RI sinωtdt +  ωLI  sinωtcosωtdt -  sinωtcosωt dt =  I sinωtdt

ωC
ε

p p p
p

1
RI sinωt +ωLI cosωt - I cosωt = sinωt

ωC
ε

∫ ∫
T T

2

0 0
sin  ωtdt = π       sinωt cosωtdt = 0
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Power in a Series RLC Circuit

2

p p pRI = E I

• Power is only dissipated in the resistor. 

• The inductor stores energy in its magnetic field. 

• The capacitor stores its energy in its electric field.

Power in resistor Power out of 

battery
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Series RLC Circuit with Generator

∫
t

0
0

dI(t) 1
RI(t)+ L + I(t')dt' = (t);  with Q = 0

dt C
ε

We have used this equation to demonstrate the behavior 

of the three types of components: R, L and C, but-

We still haven’t solved the equation

Before we actually solve it 

we need to introduce 

complex variables that will 

be used in the solution.



MFMcGraw-PHY 2426 Chap31-AC Circuits-Revised: 6/24/2012 51

The RC Circuit
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The RC Circuit - Low Freq

p p p
p

1
RI sinωt +ωLI cosωt - I cosωt = sinωt

ωC
ε

p p
p

1
RI sinωt - I cosωt = sinωt

ωC
ε

Low ω 

Let L => 0

⇒

p p

p

1
- I = (0)
ωC

I = 0   Open circuit

ε

� � �For ωt 0;  cosωt 1;   sinωt 0
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The RC Circuit - High Freq

p p
p

1
RI sinωt - I cosωt = sinωt

ωC
ε

High ω 

p p

p

p

p

p

p

1
I sinωt - I cosωt = sinωt

ωCR
R

I sinωt = sinωt

R

I =

R

ε

ε

ε
At high frequency the 

cap acts as a short circuit.

At high frequency the 

cap acts as a short circuit.

� 1For ω  
CR
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The RL Circuit



MFMcGraw-PHY 2426 Chap31-AC Circuits-Revised: 6/24/2012 55

The RL Circuit - Low Freq

p p p
p

1
RI sinωt +ωLI cosωt - I cosωt = sinωt

ωC
ε

Low ω 

p p
p

RI sinωt +ωLI cosωt = sinωtε

     

p
p

p
p

RI sinωt = sinωt

RI =

ε

ε

At low frequency L acts 

as a short circuit.

At low frequency L acts 

as a short circuit.

Let C => 0

�For ωL 1
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The RL Circuit - High Freq

�For ωL 1 

High ω 

At high frequency L acts as an open circuit.At high frequency L acts as an open circuit.

p p
p

RI sinωt +ωLI cosωt = sinωtε

⇒

∫ ∫

p p

T T

2

p p

0 0

p

p

ωLI cosωt = sinωt

  multiply by cosωt and average

1 1
ωLI cos ωtdt = sinωtcosωtdt

T T

ωLI π = 0

I = 0   Open circuit

ε

ε
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Coils & Caps in an AC Circuit
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Complex Numbers for AC Circuits
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Complex Numbers for AC Circuits

( )

( )( )

( )

2

3 2

4 2 2

5 4

j = -1

j = jj = -1 -1 = -1

j = jj = j -1 = -j

j = j j = -1 -1 = +1

j = jj = j +1 = j

The basic complex (imaginary) number is “i.”

To avoid confusion we replace “i” with “j” 
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Complex Numbers for AC Circuits

Let a and b be real numbers

Then z is a complex number and z* is the complex 

conjugate

z = a + bj

z* = a - bj

x

y

θ

z
(a,b)
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Complex Numbers for AC Circuits

The magnitude of z

( ) ( ) ( )( )

2 2 2

2 2

Magn z = z = z * z = a - bj a + bj

z = a + abj - abj - j b

z = a + b

x

y

θ

z
(a,b)

( )
( )

-1

jθ

b btanθ =  ;   θ = tan
a a

z = z cosθ + jsinθ = z e

The exponential representation of a 

complex number will prove useful in 

solving the RLC differenial eqn.
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Complex Numbers for AC Circuits

x

y

θ

z
(a,b)

( ) jθ
z = z cosθ + jsinθ = z e

e jθ can be viewed as a rotation 

operator in a complex space

πj
2

jπ

3πj
2

j2π 0

e = j

e = -1

e = -j

e = e = +1
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Why Complex Numbers ?

x

y

θ

z
(a,b)( ) jθ

z = z cosθ + jsinθ = z e

Complex numbers simplify the solution of the integral-

differential equations encountered in series RLC AC circuits.

The use of complex numbers simplifies the lead-lag nature of 

the voltage and current in AC circuits.
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Phasor Notation
This diagram depicts a series RLC 

circuit driven at a frequency that 

causes the inductive voltage to be 

greater than the capacitive voltage.

This gives the circuit an overall 

inductive nature - the current (in 

phase with VR) is lagging the applied 

voltage Vapp.

All of these voltage vectors (phasors) have a common time 

component (ejωt) and so they all rotate at this common frequency. 

By suppressing this common rotation the concepts are easier to 

understand.
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RLC Circuit Solution

∫
t

0

dI(t) 1
RI(t)+ L + I(t')dt' = (t) 

dt C
ε

The solution of a differential equation 

begins with the selection of a trial solution

jωt

pI(t) = I e

∫

jωt

p

dI
= jωI e = jωI ;     

dt

I
I(t)dt =

jω
 
 
 

 
 
 

I
RI + jωLI + = E

jωC

j
R + jωL - I = E

ωC

1 E
R  + j  ωL -   = 

ωC I
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RLC Circuit Solution

 
 
 

1 E
R +  j  ωL -   =  

ωC I

These are complex 

variables

 
 
 

1 E
Z =  R +  j  ωL -   =  

ωC I

E
          Z =

I

The quantity Z is called the impedance 

and it is a complex variable

E = I Z is a complex version of 

Ohm’s Law
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Complex Impedance

 
 
 

1
Z  =  R  +  j  ωL -

ωC

        

( )
 
 
 

2

2 1
z = z * z = R +   ωL -

ωC

L C

1
ωL -

X - X ωCtanθ = =
R R
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Relative Voltage Phases - Inductive

Impedance Space

Voltage Space
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Phases in an Inductive AC Circuit

In an inductive circuit the voltage peaks first and the 

current peaks later.

Later timeEarlier time

All vectors rotating at a 

common frequency ω 

RLC series L  only series
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Phases in a Capacitive AC Circuit

In capacitive circuit the current peaks first and the 

voltage peaks later.

Later time
Earlier time

All vectors rotating at a 

common frequency ω 

RLC series C  only series
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RLC Series AC Circuit 

Example
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R= 250Ω, L = 1.20mH, 

C = 1.80µF, Vp = 120v, f = 60Hz

Determine the following:

(a.) XL - Inductive reactance

(b.) XC - Capacitive reactance

(c.) Z - Impedance

(d.) θ - Phase angle

(e.) Ip - Peak current

(f.) IRMS - RMS current

(g.) ωR - Resonance frequency

(h.) Pavg - Average Power
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R= 250Ω, L = 1.20mH, 

C = 1.80µF, Vp = 120v, f = 60Hz

Determine the following:

(a.) XL - Inductive reactance

(b.) XC - Capacitive reactance

(c.) Z - Impedance

XL = ωL= 377(1.20x10-3) = 0.452Ω

First calc:  ω = 2πf = 2(3.14)60 = 377 rad/s

XC = 1/ωC= 1/((377)(1.80x10-6)) = 1474Ω

2 2 2 2

L CZ = R +(X - X ) = 250 +(0.452 - 1474)

Z = 1495 Ω
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R= 250Ω, L = 1.20mH, 

C = 1.80µF, Vp = 120v, f = 60Hz

Determine the following:

(d.) θ - Phase angle

     
         

-1 -1 -1 0L CX - X 0.452 - 1474 -1474
θ = tan = tan = tan = -80.4

R 250 250
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R= 250Ω, L = 1.20mH, 

C = 1.80µF, Vp = 120v, f = 60Hz

Determine the following:

(e.) Ip - Peak current

(f.) IRMS - RMS current

+jωt

p p +j(ωt -θ) +j(ωt -θ)

p+jθ

p p

p

p

+j(ωt-θ) +j(ωt+80.4)

p

p

RMS p

V e VV
I = = = e = I e

Z Z e Z

V 120
I = = = 80.3mA

Z 1495

I = I e = 80.3mAe

I
I = = 0.707I = 56.7mA

2

1st minus from the division.

2nd minus from 

the angle.
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R= 250Ω, L = 1.20mH, 

C = 1.80µF, Vp = 120v, f = 60Hz

Determine the following:

(g.) ωR - Resonance frequency

( )( )
R

-3 -6

1 1
ω = = = 21.5krad/s

LC 1.20x10 1.80x10

3ω 21.5x10
f = = = 3.42kHz

2π 6.28
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R= 250Ω, L = 1.20mH, 

C = 1.80µF, Vp = 120v, f = 60Hz

Determine the following:

(h.) Pavg - Average Power

( )( )

+jωt +j(ωt+80.4)

p p

+jωt -j(ωt+80.4) +j(ωt -ωt-80.4)

p p p p

p p-j(80.4) -j(80.4) -j(80.4)

p p RMS RMS

1
S = VI *    V = V e    I = I e

2

1 1
S = V e I e = V I e

2 2

V I1
S = V I e = e = V I e

2 2 2
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Determine the following: (h.) Pavg - Average Power

( ) ( )( )

( ) ( )

( )

p p-j(80.4) -j(80.4) -j(80.4)

p p RMS RMS

RMS RMS

RMS RMS RMS RMS

avg RMS RMS

V I1
S = V I e = e = V I e

2 2 2

S = V I cos 80.4 - jsin 80.4

S = V I cos 80.4 - jV I sin 80.4

P = V I cos 80.4

Power Factor

( )( )-3

avgP = 84.3 56.7x10 0.167 = 0.803W
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Voltages

( )( )

( )( )( )

( ) ( )( )

( )

-3

R RMS

-3 -3

L RMS L

-3 -6

C RMS C

22 2 2

R L C

RMS

V = I R = 56.7x10 250 = 14.2V

V = I X = 56.7x10 377 1.20x10 = 0.0265V

V = I X = 56.7x10 / 377 1.80x10 = 83.6V

V = V + (V - V ) = 14.2 + (0.0256 - 83.6)

V = 84.8 = V
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Resonance in a Series RLC Circuit
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Resonance in a Series RLC 

Circuit
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Power Transfer and Resonance

ω
2

p2

d Q dQ Q
L + R ++ = V cos t 

dt dt C

( )

( ) ( )

2
2

L C

p

p

Z = R + X - X

V
I  =  I cos  ωt - δ   =   cos ωt - δ

Z

 
 
 

  
  
    

2

p2

avg RMS 2

2

2 2

2

p

avg 22 2 2

0

2

V
P = I R = R

Z

1
Z =  R   +  ωL -  

ωC

V

RP =

ω -ωωL
1+

R ω
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Q Factor = Measure of Stored Energy

  
  
    

2

p

avg 22 2 2

0

2

V

RP =

ω - ωωL
1+

R ω

∆ω= FWHM

FWHM = Full Width at Half 

Maximum

Q-Factor 0 0ω fE
Q = 2π = =

∆E ∆ω ∆f

E = Total Energy and 

∆E is the dissipated energy

As an approximation

�
0ω L

Q
R
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Resonance in a Series RLC Circuit



MFMcGraw-PHY 2426 Chap31-AC Circuits-Revised: 6/24/2012 85

RLC Parallel Circuit

We’re not covering this type of circuit
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Extra Slides
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