
Chapter 33 - Light
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Properties of Light

1. The Speed of Light

2. The Propagation of Light

3. Reflection and Refraction

4. Polarization
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Electromagnetic Spectrum of Radiation

The visible spectrum 
runs from about 4000 
Å to 8000 Å or 400nm 
to 800nm.
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Electromagnetic Spectrum of Radiation

⇐ ≤ ≤ ⇒Ultraviolet   400nm         λ        700nm    Infrared

Short wavelength Long wavelength

Violet Red

High Energy Low Energy

λf = c        E = hf

Planck’s constant    h = 6.626x10-34 Js = 4.136x10-15 ev-s
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The Propagation of Light
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In Optics we treat light 
(EM radiation) as a 
wave. 

We ignore the B vector 
and treat the E vector 
only when it comes to 
polarization.

The orientation of the E 
vector can be 
manipulated.

Electromagnetic Waves
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Wave fronts of plane waves

Propagation Vectors are Light Rays
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Fermat’s Principle

The path taken by light traveling from one point to 
another is such that the time of travel is a minimum.
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http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/fermat.html
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Spherical Wave Front
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Wave Fronts and Rays

A light wave can be represented by a wave front which is 
useful for discussing certain aspects of wave propagation.

A vector that is normal to the wave front is called a light ray.

For tracing light through a transparent material the light ray 
formalism is more useful
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Huygens Principle

“Each point on a 
primary wavefront 
serves as the source of 
spherical secondary 
wavelets that advance 
at the wave speed for 
the propagating 
medium. The primary 
wavefront at some later 
time is the envelope of 
these wavelets.”
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Transformation of the Wave Front
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Transformation by Elastic Scattering
Scattering of electromagnetic 
radiation (light) is described 
physically as elastic absorbtion and 
re-radiation (emission).

The word elastic means that no 
energy is lost in the scattering 
process.

This absorbtion and emission process takes time. It makes the 
light appear to be traveling slower when passing through a 
transparent material such as glass. 
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Transformation by Elastic Scattering

In free space the speed of light is a constant. EM radiation 
travels at the speed of light or it doesn’t exist at all. Between 
the absorption and emission processes the EM wave doesn’t 
exist. Its energy is in the absorbing atom or molecule.

It is convenient to describe the passage of light through a 
transparent material as traveling slower rather than 
describing the details of the absorbtion and emission.

λf = c        E = hf
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Transformation of the Wave Front

λ

c
λf = c        E = hf = h

Planck’s constant    h = 6.626x10-34 Js = 4.136x10-15 ev-s

Notice that the portion of the wave 
front that went through the thickest 
piece of glass is the farthest behind. 
This is because the speed of the 
wave slows down in glass. 

Remember this is elastic scattering - 
energy is conserved. The 
wavelength and speed must both 
decrease to maintain constant E.
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Wavelength in a Medium

λ

For all waves    λf = v

In a medium      and v change

'
λ  has a velocity v in the medium

'

'

'

'

λ f = v

λ c λ λ
=   or  λ = =

cλ v n
v

Since n > 1   λ < λ

Therefore λ decreases in a transparent material
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Reflection and Refraction
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Reflection and Refraction

Refracted ray

Reflected rayIncident ray

Angle of refraction

Angle of 
incidence: θ1

Angle of 
reflection: θ’1
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Reflection and Refraction

Semicircular glass disk

Ultrasonic waves 
in water reflecting 
off a steel plate.

Incident waves Reflected waves

Refracted waves
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Multiple Reflection and Refraction

Incident 
Light



MFMcGraw-PHY 2426 Chap33a-Light - Revised: 7-13-2013 22

Mirror Reflection
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Reflection From a Rough Surface

Smooth and rough are relative terms. Variations are large or 
small relative to the wavelength of the light.
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Snell’s Law

1 1 2 2n sinθ = n sinθ All angles are measured 

from the surface normal.
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Snell’s Law

1 1 2 2n sinθ = n sinθ All angles are measured 
from the surface normal.

The reverse pathway of the light beam also satisfies Snell’s Law.

Less dense to more 
dense - bend toward 
the normal.

More dense to less 
dense - bend away 
from the normal.
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Index of Refraction

n

c v
f = = = constant frequency

λ λ

λ λ
n

v c
λ   =   =    =  ;  where n = 

c c n v
λ v

The constant n is the index of refraction and 
is material and frequency dependent.
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Total Internal Reflection

1 1 2 2

02
c

1

2
c

1

n sinθ = n sinθ

n
sinθ = sin90

n

n
sinθ =

n

0

2θ = 90

Total internal reflection requires light going from a 
more dense material to a less dense material.
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Total Internal Reflection
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The Geometry of Internal Reflection

How do you get the light source inside the glass?
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Typical Internal Reflection Problem
Two types of questions:

(1) How big is the circle?

(2) How deep are you?

Total internal reflection condition

;  2
c c

1

R n
tanθ = sinθ =

y n

n2 = 1.00;  n1 = 1.33

 
 
 

-1 0

c
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θ = sin = 48.8

1.33

( )c

R 2.00
y = = = 1.75m

tanθ tan 48.8
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1

n
2

R = 2.0m
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Reflection via Wave Front Generation
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Special Case - Normal Incidence

I0 = Incident intensity

I = Reflected intensity  
 
 

2

1 2

0

1 2

n - n
I = I

n + n

For a typical case  n1 = 1.0, n2 = 1.5

0I
I =

25

Reflected intensity ~ 4%      Transmitted intensity ~ 96%
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Index of Refraction versus Frequency

The dependence of the 
index of refraction with 
frequency is referred to 
as dispersion
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Dispersion of Light

1 1 2 2n sinθ = n sinθ

By measuring the prism and deflection angles, a very precise 
determination of the index of refraction to 6 decimals places.
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Rainbow Formation
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Viewing the Primary Rainbow

A rainbow is the result of light scattering from many water 
droplets viewed from a particular angle.
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Viewing the Primary Rainbow

The light source needs to be 
behind the observer.
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A Rainbow is the Result of Internal 
Scattering of Light within Water Drops

Secondary - Double Scattering

Primary - Single Scattering
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Primary Rainbow Geometry

Refraction

Refraction

Reflection

Water droplet

Scattering angle
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Descartes’s Construction of Parallel Rays 
Entering a Spherical Water Drop

Rays exit at increasing 
angles up until ray #7. 

This maximum angle is 
about 420.

The concentration of 
the exiting rays around 
this maximum angle 
gives rise to the 
rainbow effect.
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http://www.atoptics.co.uk/rainbows/primary.htm

From Atmospheric Optics
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Polarization
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Optical Scattering

Scattering of electromagnetic radiation (light) is described 
physically as elastic absorbtion and reradiation (emission).

The elastic description means that no energy is lost in the 
scattering process.

The process can be visualized be treating the scattering 
atoms as little dipole antennas. These little antennas have 
maximum radiation in the direction perpendicular to the 
antenna and no radiation along the axis of the antenna..  
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Polarization by Scattering

Incident light 
polarized along 
the x-direction 
cannot produce 
radiation along 
the x-direction.

Incident light 
polarized along 
the y-direction 
cannot produce 
radiation along 
the y-direction.
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Microwave Polarization Example

The electric field vector of the microwave radition is oriented in the vertical 
direction. The wires in the grating on the left are oriented parallel to the 
electric vector and absorb energy and hence the microammeter gives a low 
reading.

The grating wires on the right are perpendicular to the microwave electric 
vectors. Therefore they do not absorb any energy and hence the high 
reading on the microammeter.
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Polarization by Scattering

Ordinary light 
incident from the 
left

At the polarizing angle, 
known as Brewster’s 
angle, the angle between 
the reflected ray and the 
refracted ray is 900
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Polarization by Scattering
Plane polarized  light 
incident from the left

( )
=

1 p 2 2

0

2 p

0

1 p 2 p

1 p 2 p

2
p

1

n sinθ = n sinθ

θ = 90 - θ

n sinθ = n sin 90 - θ

n sinθ n cosθ

n
tanθ =

n

The separation of the electric vectors indicate the wavelength. The vectors 
are closer inside the glass because the wavelength is shorter in the glass.
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Polarization by Scattering
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Polarization by Scattering
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Crossed Polarizers
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Birefringence
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Crystals vs Glass
Glass is described as an amorphous, homogenous and 
isotropic material

• Amorphous = It has no preferred directions such as 
found in a crystal.

• Homogenous = Every part of the material is exactly 
like every other part of the material.

• Isotropic = All directions in the material are the same.
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Crystal Structure
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Crystals vs Glass
Crystals are defined by their symmetry under rotation.

A cubic crystal such as NaCl is not amorphous but it can still 
be described as isotropic because its properties are the same in 
all three directions.

If a crystal is described by two different indices of refraction 
then we say the crystal exhibits axial symmetry. This 
symmetry axis is referred to as the optic axis 

• Ordinary ray - electric vector perpendicular to optic axis.

• Extraordinary ray – electric vector is parallel to the optic 
axis.
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1. Type I: These include Si, GaAs and CdTe. They have cubic symmetry; 
3 equivalent directions; n1 = n2 = n3 ; the ellipsoid is a sphere; the 
material is isotropic.

2. Type II: These include calcium carbonate, quartz, LiNb, calcium 
sulfide. They have trigonal, tetragonal or hexagonal structure. There 
is one axis of symmetry, which is one of the principal axes. Thus, n1 = 
n2  n3 . The ellipsoid is an ellipse with one axis along the 3-direction, 
rotated around the 3-axis. That is, the ellipsoid exhibits the same 
symmetry as the crystal. Such crystals are called uniaxial.

3. Type III: These crystals have two axes of symmetry n1  n2  n3 and so 
are called biaxial. The structure is orthorhombic, monoclinic or 

triclinic. All three principal axes of the ellipsoid are different. 

Crystal Symmetries 

The Index of Refraction Ellipsoid
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• An uniaxial crystal is isotropic within the plane orthogonal to 
the optical axis of the crystal. This demonstrates that the 
optic axis a symmetry axis of the crystal under rotations.

• The refractive index of the ordinary ray (electric vector 
perpendicular to optic axis) is constant for any direction in 
the crystal. 

• The refractive index of the extraordinary ray (electric vector 
parallel to the optic axis) is variable and depends on the 
direction. 

• Non-crystalline materials have no double refraction and thus, 
no optic axis. 

Uniaxial Crystal
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Polarization By Birefringence
Light propagation in the material is 
at an arbitrary angle relative to the 
optic axis.

The ordinary ray has its electric vector perpendicular to the 
optic axis. The extraordinary ray’s electric vector makes an 
angle with the optic axis.
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Birefringence
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Optic Axis

Prepares the light with the 
desired polarization The next slide shows the light 

exiting the Crystal plate.
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Ordinary and Extraordinary Light Rays
The e ray experiences a 
different ne than the o ray no

The e ray will get 
out of phase with 
the o ray. In effect 
the optic material 
acts to rotate the 
direction of the 
electric field 
vector.
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Birefringence

Old nameSpherical and 
ellipsoidal waves 
diverge from point S 
in a birefringent 
crystal

An example of 
Huygen's wavelets.
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Birefringence

(b) Light traveling in the direction of the optic axis, (c) perpendicular to 
the optic axis, and (d) at an arbitrary angle to the optic axis.

In case (c) there is no separation or shifting of the two 
polarization states but they are traveling at different speeds inside 
the material. 
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Birefringence

Wavefront for the two rays.

The optic axis 
determines the 
orientation of the 
propagation ellipsoid.
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Ordinary and Extraordinary Light Rays
Rays separated for ease of viewing

Polarization in the 
plane of O.A.

Polarization perpendicular 
to the plane of O.A.
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Ordinary and Extraordinary Light Rays
Rays separated for ease of 
viewing
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Crossed Polarizing Sheets
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Crossed Polarizing Sheets for Analysis

The first sheet prepares the polarization in the vertical direction. 
The second sheet only allows light through that is polarized in the 
horizontal direction. As a result no light is transmitted.

A polarizing sheet transmits light polarized parallel to the optic axis.
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Crossed Polarizing Sheets for Analysis

An object placed between the crossed polarizers can affect the 
light passing through it. By changing the plane of the polarization 
some of the light will now be transmitted through the final sheet.

We are interested 
in the physical 
properties and 
phenomena taking 
place in the object 
between the 
polarizers.
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Shocked and Unshocked Quartz Crystals

The shock of the impact is evident in the parallel lines in 
the crystal on the left. The crystal on the right exhibits no 
such shocked features.

Quartz crystal grain from meteorite site Quartz crystal grain from volcanic rocks
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CO2 Trapped in Antarctic Ice Cores

194 m deep - 1600 years old 56 m deep - 450 years old

The trapped CO2 in the thin slices of ice core appear as 
amber colored bubbles.
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Stressed Plastic

A portion of a stressed French Curve between crossed polarizers.

Increased stress 
at point of tight 
curves.

Uniform color 
of light at 
points of  low 
stress.
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Stressed Plastic
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Chartres Cathedral
Chartres France
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Chartres Cathedral thru Crossed Polarizers


