Physics 2426 Engineering Physics II Review Problems Exam 1

- 22. Three charges are located at 100-m intervals along a horizontal line: a charge of -3.0 C on the left, +2.0 C in the middle, and +1.0 C on the right. What is the resultant force on the 1.0 C charge due to the other two?
 - A) 1.1×10^6 N to the right
- D) 2.5×10^6 N to the left

B) 1.1×10^6 N to the left

- E) 4.5×10^7 N to the right
- C) 2.5×10^6 N to the right Ans: A

18.

- A) vertically up.
- B) vertically down.
- C) zero.

Ans: E

D) horizontal to the left.

E) horizontal to the right.

Three charges Q_1 , Q_2 , and Q_3 , each equal to 6.4×10^{-19} C, are in a straight line. The distance between neighboring charges is 60 nm. The magnitude of the electric field at P, which is 80 nm from Q_2 on a line at right angles to the line between Q_1 and Q_3 , is

A) 1.2×10^{-8} N/C	D) 1.9×10^{10} N/C
B) 16 N/C	E) 1.2×10^8 N/C
C) 2.0 N/C	
Ans: D	

Three charges, each of $Q = 3.2 \times 10^{-19}$ C, are arranged at three of the corners of a 20-nm square as shown. The magnitude of the electric field at D, the fourth corner of the square, is approximately

A)
$$1.4 \times 10^7$$
 N/C
B) 1.0×10^{11} N/C
C) 3.6×10^{10} N/C

Ans: A

- D) 30 N/C
- E) 1.8×10^7 N/C

A bob of mass m (m = 0.500 g), and charge magnitude Q ($Q = 50.0 \mu$ C) is held by a massless string in a uniform electric field E. If the bob makes an angle of 10.0 degrees with the vertical, then calculate the magnitude of the electric field E and the sign of the bob charge Q.

- A) 1.73×10^1 N/C and Q is positive.
- B) 9.81×10^1 N/C and Q is negative. C) 9.81×10^1 N/C and Q is positive.

Ans: A

- D) 1.73×10^1 N/C and Q is negative.
- E) 1.80×10^{-1} N/C and Q is positive.

Use the following to answer questions 1-3:

An infinite line charge of linear density λ = 0.30 µC/m lies along the *z* axis and a point charge *q* = 6.0 µC lies on the *y* axis at *y* = 2.0 m. The *x* component of the electric field at the point P on the *x* axis at *x* = 3.0 m is approximately

 A) 1.8 kN/C
 B) 4.2 kN/C
 C) 0.96 kN/C
 D) 5.2 kN/c
 E) 0.64 mN/C

52.

A solid sphere of radius *a* is concentric with a hollow sphere of radius *b*, where b > a. If the solid sphere has a uniform charge distribution totalling +*Q* and the hollow sphere a charge of -*Q*, the electric field at radius *r*, where r < a, is which of the following, in terms of $k = (4\pi \in 0)^{-1}$? A) kQ/r^2 B) kQr/a^3 C) kQ/a^2 D) kQ/b^2 E) zero Ans: B

30.

Use the following to answer questions 31-33:

- 31. A solid sphere of radius *a* is concentric with a hollow sphere of radius *b*, where b > a. If the solid sphere has a charge +Q and the hollow sphere a charge of -Q, the electric field at radius *r*, where a < r < b, is which of the following, in terms of $k = (4\pi \epsilon_0)^{-1}$? A) kQ/r^2 B) $2kQ/r^2$ C) kQ/a^2 D) kQ/b^2 E) $kQ/(b-a)^2$ Ans: A
- 32. A solid sphere of radius *a* is concentric with a hollow sphere of radius *b*, where *b* > *a*. If the solid sphere has a charge +*Q* and the hollow sphere a charge of -*Q*, the electric field at radius *r*, where *r* > *b*, is which of the following, in terms of k = (4π∈0)⁻¹?
 A) kQ/r² B) 2kQ/r² C) kQ/a² D) kQ/b² E) zero Ans: E
- 33. A solid sphere of radius *a* is concentric with a hollow sphere of radius *b*, where b > a. If the solid sphere has a charge +Q and the hollow sphere a charge of -Q, the electric field at radius *r*, where r < a, is which of the following, in terms of $k = (4\pi \in _0)^{-1}$? A) kQ/r^2 B) kQr/a^3 C) kQ/a^2 D) kQ/b^2 E) zero Ans: E

An infinite plane of surface charge density $\sigma = +8.00 \text{ nC/m}^2$ lies in the yz plane at the origin, and a second infinite plane of surface charge density $\sigma = -8.00 \text{ nC/m}^2$ lies in a plane parallel to the yz plane at x = 4.00 m. The electric field at x = 3.50 m is approximately

A) 226 N/C B) 339 N/C C) 904 N/C D) 452 N/C E) zero Ans: C

An infinite plane of surface charge density $\sigma = +8.00 \text{ nC/m}^2$ lies in the yz plane at the origin, and a second infinite plane of surface charge density $\sigma = -8.00 \text{ nC/m}^2$ lies in a plane parallel to the yz plane at x =4.00 m. The electric field at x = 5.00 m is approximately A) 226 N/C B) 339 N/C C) 904 N/C D) 452 N/C E) zero

Ans: E

- 33. You attach a 30-pF capacitor across a 1.5-V battery. How much energy is stored in the capacitor?
 - A) 3.4×10^{-11} JD) 3.4×10^{-8} JB) 4.5×10^{-11} JE) 4.5×10^{-8} JC) 6.7×10^{-11} JAns: A

- 63. When you insert a piece of paper ($\kappa = 3.7$) into the air between the plates of a capacitor, the capacitance
 - A) increases.
 - B) decreases.
 - C) does not change.
 - D) could increase, decrease, or not change depending on the dielectric constant of the paper.
 - E) does none of these.

Ans: A

65.

A capacitor is connected to a battery as shown. When a dielectric is inserted between the plates of the capacitor,

- A) only the capacitance changes.
- B) only the voltage across the capacitor changes.
- C) only the charge on the capacitor changes.
- D) both the capacitance and the voltage change.
- E) both the capacitance and the charge change.

Ans: E

- 66. The capacitance of a parallel-plate capacitor is 24 μ F when the plates are separated by a material of dielectric constant 2.0. If this material is removed, leaving air between the plates, and the separation between the plates is tripled, the capacitance is A) unchanged B) 16 μ F C) 36 μ F D) 0.14 mF E) 4.0 μ F Ans: E
- 71. A parallel plate capacitor of area A = 30 cm² and separation d = 5 mm is charged by a battery of 60-V. If the air between the plates is replaced by a dielectric of κ = 4 with the battery still connected, then what is the ratio of the initial charge on the plates divided by the final charge on the plates?
 A) 4.3 B) 1 C) 16 D) 0.25 E) 4.0

Two charged metal spheres are connected by a wire. Sphere A is larger than sphere B, as shown. The magnitude of the electric potential of sphere A

- A) is greater than that at the surface of sphere B.
- B) is less than that at the surface of sphere B.
- C) is the same as that at the surface of sphere B.
- D) could be greater than or less than that at the surface of sphere B, depending on the radii of the spheres.
- E) could be greater than or less than that at the surface of sphere B, depending on the charges on the spheres.

Ans: C

63.

The vector that best represents the direction of the electric field intensity at point x on the 200-V equipotential line is

A) $\vec{1}$ B) $\vec{2}$ C) $\vec{3}$ D) $\vec{4}$ E) None of these is correct. Ans: D

57. A charge of 100 nC resides on the surface of a spherical shell of radius 20 cm. The electric potential at a distance of 15 cm from the center of the spherical shell is
A) 18 V B) 180 V C) 1800 V D) 18,000 V E) None of these is correct. Ans: E