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Measurements and Data Analysis  Revised 5/20/2011 

Significant Figures 

 Computations 

Types of Errors 

 Random Errors & Systematic Errors 

Deviation from the Mean 

 Range - quick and very approximate 

Absolute Deviation - poor man’s Std Dev - before calculators 

Standard Deviation - useful for random Gaussian errors that are typical of 

measurements. 

Statement of Measurement Result 

XMeas = XAvg ± ∆X       where ∆X signifies the deviation measure chosen. 

Accuracy & Precision 

Expressing measurement errors / uncertainty 

 % Error 

 % Difference 

 % Uncertainty 

Instrument Limited Error - equipment limitation 

Propagation of Error 

Errors in the result of a calculation are due to errors in the numbers used in performing 

the calculation. 

Addition / Subtraction 

Multiplication / Division 

Data Analysis Example - Atwood’s Machine 

Curve Fitting - Limited to Linear “Curves” or Trendlines, sometimes called 

Regression lines. 

Least Squares curve fitting 

Linear Trendline Equation: Slope and y-intercept 

LINEST - Line statistics - Std Dev of slope and intercept 

Data processing to produce a linear relationship: X => log(X); T => T
2
 

Accuracy related 

Precision related 
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Rules for Significant Digits: 
 

1.  All non-zero numbers count. 
 

 Ex.  135.72  has 5 significant digits 

 

2.  Zeros either count or don’t count depending upon their position: 

 a.  Leading zeros: 

  i.  Before the decimal point – aren’t necessary in terms of either value of the 

number or implied accuracy of the measurement so they don’t count. 

 

   Ex.  000356.  has 3 significant digits 

 

  ii.  After the decimal point – are necessary in terms of the value of the number (i.e., 

they hold place), but otherwise they do not imply anything about the accuracy of the measurement so 

they don’t count.   

 

   Ex.  0.00008539  has 4 significant digits 

 

 b.  In between zeros:  zeros in between other numbers always count no matter if they 

are in front of or after the decimal point, because they are part of the value of the number. 

 

  Ex.  20850.406  has 8 significant digits 

 

 c.  Ending zeros: 
  i.  Before the decimal point – are necessary because they both indicate the value of 

the number (i.e., they hold place) and they are also supposed to imply the accuracy of the 

measurement (i.e., they give significance), thus ending zeros may or may not play a dual role and so 

they are indeterminate!    

 

   Ex.  25000  has an indeterminate number of significant digits 
 

 Note:  This number should be expressed in scientific notation in order to correctly convey to the reader 

the appropriate number of significant digits in this number, as follows:  if the number has only 2 significant 

digits it should be written as 2.5 * 10
4
, if the number has 3 significant digits it should be written as 2.50 * 10

4
, if 

the number has 4 significant digits it should be written as 2.500 * 10
4
, and finally if the number has 5 significant 

digits then it should be written as 2.5000 * 10
4
! 

 

  ii.  After the decimal point - aren’t necessary in terms of the value of the number, 

but they do imply a difference in the accuracy in the measurement (i.e., they give significance) so they 

do count. 

 

   Ex.  67.4300  has 6 significant digits 
 

 Note:  The number 67.4300 differs from the number 67.43 because of the implied 

accuracy in the measurement of these numbers.  The implied accuracy is at most +/- 1 in the 

right most significant digit.  Thus, the implied uncertainty range for 67.4300 is 67.4299 – 

67.4301 while the implied uncertainty range for 67.43 is 67.42 - 67.44.  Notice that these 

vastly different ranges suggest that these two numbers are indeed different
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Measurement Errors 

 

Random Errors -  

Random events are independent of each other, i.e. as in the flipping of a coin. The result of 

one flip does not influence the outcome of the next flip and is not itself influenced by the 

outcome of the previous flip. To better understand random events it is necessary for them to 

have a common probability distribution. The outcomes of all the coin flip trials belong to the 

same probability distribution. It is impossible to known the exact nature of the probability 

distribution without running an infinite number of trials but they can be estimated if a 

sufficiently large number of trials are conducted. The random errors that will be encountered 

in this class all belong to the family of Gaussian probability distributions - the famous bell-

shaped curve. In events described by the Gaussian probability distribution extreme events are 

rare. The uncertainty in the experimental results can be quantified in the case of these random 

errors described by the Gaussian probability distribution.  

 

Systematic Errors -  

These types of errors can show up as any of the following 

• Variations in the physical property being measured. 

• Variations in the environmental variables: temperature, humidity, etc. 

• Variation in the reading of the measurement instrument. 

• Imprecision in the experimental equipment. 

 

These can be the result of equipment malfunctions or design errors. They can also be caused 

by incorrect experimental procedures. Systematic errors can also arise from the variation in 

certain variables that have been ignored in the theoretical description of the system being 

measured. These are usually ignored because they were believed to be unimportant. 

Sometimes systematic errors make their presence known and the size of the effect can be 

quantified. Systematic errors are eliminated or controlled in successive repetitions of the 

experiment.  

 

 

Our goal this semester will be to analyze our measurements assuming random errors and in 

stating our results to close in on any possible systematic errors in the various lab experiments. 
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Random Errors - Gaussian Distribution 

 

The measurement errors typically 

encountered in the physics laboratory 

can be described by the Gaussian 

probability distribution (see diagram 

to the right). This diagram shows a 

normalized distribution with mean 0 

and standard deviation of 1. The 

average of a series of measurements 

(of the same variable) is the best 

estimate of the mean describing the 

probability distribution. The standard 

deviation is a measure of the 

dispersion of the measurements about 

the mean. Together, the mean and the 

standard deviation are enough to 

totally describe the Gaussian 

distribution (this also sometimes 

called a probability density). The vertical lines represent the positions, on either side of the 

mean, of distances that are ±1, ±2, ±3 standard deviations from the mean. The area under the 

curve represents the probability. The total area represents a probability of 1 because X extends 

to infinity in both directions so every possible occurrence is represented. The area under the 

curve between the ±1 standard deviations lines represents 68.3% of the total area. The area 

under the curve between the ±2 standard deviations lines represents 95.4% of the total area. 

The area under the curve between the ±3 standard deviations lines represents 99.7% of the 

total area.  

 

This means that you can express the result of a series of measurements of the quantity X, 

using the average (mean) of those measurements and the standard deviation (StdDev), as 

shown below: 

 

XMeas = XAvg ± StdDev 

 

If these series of measurements are truly from a population described by the Gaussian 

probability distribution then if you repeat the series of measurements there is a 68.3% 

probability (chance) that the average of this second series with fall within 1 StdDev of the 

first average. That is, the second average with be within interval defined by 

 

 XAvg + StdDev    and   XAvg - StdDev 

 

68.3% of the time. 
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Deviation from the Mean 

 Range - quick and very approximate 

Absolute Deviation - poor man’s Std Dev - before calculators 

Standard Deviation - useful for random Gaussian errors that are typical of 

measurements. 

 

There is always some scatter in experimental measurements. Even when making multiple 

measurements, with extreme care, there will be some variation and it is of interest to quantify 

the degree of that scatter. This scattering is referred to as deviation from the mean and there 

are several ways to describe it. Some methods are quick and dirty and were favored in the era 

before handheld calculators due to their ease of calculation.  

 

We want to be able to state our experimental results in the following form: 

 

XMeas = XAvg ± ∆X       where ∆X signifies the chosen deviation measure. 

 

Range 

The quickest estimate of the deviation from the mean is called the Range 

 

Range = ABS(Largest Data - Smallest Data) 

 

It is just the absolute value of interval between the largest and the smallest data points. This is 

seldom used anymore. 

 

Absolute Deviation - poor man’s Std Dev - before calculators 

This is a kind of “mathed down” standard deviation. It avoids the squaring and the final 

square root that was a plus in the pre-calculator era. 

 

  Absolute Deviation = (1/N) * Σ ABS (Xi - XAvg) 

 

The absolute values of the differences of each data point from the mean are summed. The 

result is then divided by N, the total number of measurements.  

 

The Standard Deviation 

With the coming of calculators and spreadsheet the standard deviations is used almost 

exclusively in describing measurement errors.  

 

Standard Deviation =  σ = SQRT [(1/N-1) * Σ (Xi - XAvg)
2
 ] 

  

The presence of “N-1” in the denominator instead of  “N” is for statistical reasons that won’t 

be discussed here.



 

Meas and Data Analysis 5-20-2011.doc - 6 - 

Accuracy and Precision 

 

The terms precision and accuracy carry very specific meanings in the world of physical 

measurements. They are also a source of much confusion for a student taking a first physics 

course or any science course requiring measurements. Precision is related to repeatability 

while Accuracy is related to a comparison to a standard or accepted value. This is best 

illustrated by the diagrams below, which represent bulls-eye targets, each consisting of three 

concentric rings. The dots are bullet holes in the targets and represent a series of experimental 

measurements. The quantity sought is the center of the inner circle. In the first target on the 

left the shots are scattered and only one has come close to the center of the inner circle. The 

scattering of the shots indicates that there is little precision (repeatability) in the 

measurements. The fact that only one reached the inner circle demonstrates the lack of 

accuracy. The center target diagram shows a tight grouping of the shots demonstrating a high 

degree of repeatability or precision. However, the center of the shot group is quite a distance 

from the center of the target and demonstrates a lack of accuracy. The shots in the target on 

the far right demonstrate both high precision and accuracy. The center of the tight group of 

shots is centered on the inner circle.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

No Accuracy & No Precision Precision but No Accuracy Precision & Accuracy 
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Expressing measurement errors / uncertainty 

 % Uncertainty 

% Error 

 % Difference 

Instrument Limited Error - equipment limitation 

 

Precision 

The most basic way to reduce the effect of measurement errors is to repeat the measurement 

multiple times. How many times the measurement should be repeated does not have an all-

purpose answer. The answer falls under the general principle of “Good enough for what it’s 

for.” The principle can be demonstrated by the following example. Suppose you are interested 

in knowing the width of a certain doorway. How you measure the doorway and how many 

times you repeat the measurement will depend on what the result of the measurement will be 

used for. If your interest is driven by pure curiosity then you might just look at the doorway 

and guess the width without performing any formal measurement. If you need to fit a piece of 

furniture through the doorway then you would probably use a tape measure to make a quick 

measurement. However, if you are planning on purchasing a door for that doorway then your 

interest in the exact width is substantially increased. You might even be concerned enough to 

make measurements in several places, in case the width is not constant over the entire height 

of the doorway. 

 

Multiple measurements are the hallmark of an attempt to determine the precision of a series of 

measurements. Precision is the basic requirement for any measurement system - the ability to 

repeat the same measurement multiple times with the resulting measurements grouped tightly 

together. If you can’t get precision then worrying about accuracy is a waste of time. 

 

To determine the precision it is necessary to calculate the average (XAvg ) and the standard 

deviation (StdDev) of the measurements. The number of measurements taken is determined 

by many considerations. More measurements allow for a better determination of the average 

and standard deviation and might be possible if the measurements are not too expensive and 

don’t take too long. Sometimes it is as simple as having the lab handout specify how many 

measurements to make. The result of your calculations would yield the following statement of 

your results.  

 

XMeas = XAvg ± StdDev 

 

The % Uncertainty is given by 

 

% Uncertainty = StdDev * 100 / XAvg 

 

In the typical lab in this course the goal is usually to have your measurement precision at or 

below 1.0% if possible.  

 

Accuracy related 

Precision related 
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Accuracy 

Accuracy is related to the comparison of your results to a standard or to an accepted value.  

 

% Error = (XAvg - XStd)* 100 / XStd 

 

where XStd is the standard value for the quantity X. Some books use the absolute value to 

determine the value of the %Error but in doing so you lose the information as to whether your 

experimental value is above or below the standard or accepted value. Knowledge of this 

direction of variation is vital if the experiment is going to be improved for future use. 

 

Sometimes a standard value isn’t available and a comparison is made between two different 

measurements of the same quantity and it is desirable to quantify the results. In this case a 

slightly different quantity is calculated. This is called the % Difference. Here it cannot be 

determined if one measurement is better than the other so both must be treated equally. In the 

%Error calculation the XStd value is given special treatment and appears in two places in the 

equation. Instead of using one or the other measurement in the denominator the average of the 

two measurements is used instead to avoid biasing the % Difference either up or down. 

 

% Difference = (XAvg1 - XAvg2)* 100 / ((XAvg1 + XAvg2)/2) 

= (XAvg1 - XAvg2)* 200 / (XAvg1 + XAvg2)  

 

Instrument Limited Error - equipment limitation 

Every instrument used in performing a measurement has a smallest unit of measurement. On a 

meter stick it is the smallest distance between two adjacent scale lines - usually 0.10 cm or 1.0 

mm. On a digital scale it might be 0.1 grams. In the case of the meter stick, if the item being 

measure has a well-defined edge it might be possible to estimate the fraction of the smallest 

meter stick interval, fractions of a millimeter. In the case of the digital scale all we know is 

that mass measurement is somewhere between the displayed number and that number plus or 

minus “ 0.1” grams. In either case, there is a residual uncertainty due to the scale limitation of 

the instrument itself. We describe this as the Instrument Limited Error. The most popular 

method of quantifying this error is to set it equal to ± one-half the smallest division. 

 

Instrument Limited Error = ILE = ± ½ Smallest Division 
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Propagation of Error 

It isn’t possible to directly measure every quantity. Some quantities are derived by way of a 

calculation that is based on variables that were measured directly. The final resulting error in 

the  calculation is due to errors in the numbers used in performing the calculation. The passing 

on of this error is referred to as the Propagation of Error. It is desirable to estimate the size of 

the error in the final result due to the errors in the contributing variables. The analysis can 

become quite complicated and relies heavily upon the use of Calculus. However, for our 

purposes, we only need to consider two categories that will cover must of the situations that 

will arise in a basic Physics course. These include the categories of formulas involving:  

Addition / Subtraction and Multiplication / Division. In the following we will assume that the 

variables to be used in the calculations are X. Y and Z. It is assumed that ∆X, ∆Y, and ∆Z 

signify the chosen deviation measures and XAvg, YAvg, ZAvg are the corresponding average 

values of X, Y and Z. SQRT is the square root function. 

 

Addition / Subtraction 

 

Example:  W = X + Y - Z 

 

∆W = SQRT [ABS(∆X) + ABS(∆Y) + ABS(∆Z) ] 

 

Multiplication / Division 

 

Example:  W = X*Y/Z 

  

(∆W /WAvg)
 
= SQRT [(∆X/XAvg)

2
 + (∆Y/YAvg)

2
 + (∆Z/ZAvg)

2
 ] 
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Atwood’s Machine - Data Analysis Example 

 

Atwood’s Machine provides a means of 

obtaining a measurement of the acceleration due 

to gravity (“g”). The basic simplicity of the 

experimental set up can be appreciated from the 

diagram to the right. The equation below relates 

the measured acceleration “a” to “g”, the 

acceleration due to gravity. 

 

 

The basic intent of the Atwood Machine is to slow down the motion so that the system 

acceleration is easier to measure. Then, by applying Newton’s 2
nd

 Law to the system, the 

above equation for the calculated acceleration  can be derived, where friction has been 

explicitly ignored.  

The table below shows some typical experimental data. The masses are in grams since they 

will only appear in the form of a ratio in the equation above. The accelerations are in units of 

m/s
2
 and were measured with a smart pulley / photogate combination. In this version of 

Atwood’s Machine the sum of the two masses, M1 + M2, was NOT kept constant.  

 

M1 M2 M1 + M2 Del m Delm/ 
(M1+M2) 

aCalc aMeas 

55.0 57.0 112.0 2.0 0.018 0.1750 0.1102 

55.0 59.0 114.0 4.0 0.035 0.3439 0.2696 

55.0 61.0 116.0 6.0 0.052 0.5069 0.4254 

55.0 63.0 118.0 8.0 0.068 0.6644 0.5669 

55.0 65.0 120.0 10.0 0.083 0.8167 0.7237 

 

The value of  “g” could be determined for each row in the above table but that would lead to 

inconsistent values each of which would contain significant errors. Our approach will be to 

use all the data and do a least squares linear fit to the data.  

 

g
mm

mm
a

21

21

+

−
=
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The Linear Trend Line 

 

On the right are two sets of Atwood 

data plotted on a linear chart of 

acceleration versus the mass ratio  

(m2 - m1)/ (m1 + m2). The lower line is 

the data from the aMeas column and the 

upper line is from the aCalc column in 

the data table above. Linear trendlines 

were then drawn through the respective 

data points. Selecting “Add Trendline” 

will summon up the two-tabbed 

dialogue box shown below. Select the 

linear trendline on the “Type” page 

and on the “Options” page select the 

last two options: “Display equation on chart” and “Display R-squared value on the chart.”  

The fitting parameters are the slope and the y-intercept, represented by the x-coefficient and 

the constant term respectively in the trendline equation. 

If the trendline function also displayed the uncertainty statistics of its fitting 

parameters we would be done here. But it doesn’t so we need to use the LINEST worksheet 

function that is explained on the next page. 

Atwood Data - Unadjusted

y = 9.800E+00x

R2 = 1.000E+00

y = 9.3120x - 0.0572

R2 = 0.9997
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LINEST Directions 

In Excel you will need to use the LINEST Worksheet function to calculate the 

uncertainties in the slope and the y-intercept. Start by selecting a 2-column by 2 –row area of 

empty cells on the spreadsheet. Then, under the Inset menu item select the Function option – 

or – click on the “fx” button on one of the tool bars. The Paste Function dialogue box will 

appear. In the left window select the Statistical Function category. In the right window scroll 

down to find the LINEST function and select it. Then click OK. The LINEST dialogue box 

will appear with four input items: “Known y’s”, “Known x’s”, “Const”, “Stats”. Place the y 

and x cell ranges in the first two input boxes. If the “Const” item is TRUE or omitted the y-

intercept will be calculated - which is what we want. DO NOT force the trendline to go 

through the origin. It will be set to zero if “Const” is set to FALSE. “Stats” is set to TRUE to 

get the array of statistics to be displayed in the 2x2 array. Now this is an ARRAY Function 

and the “Ctrl” and “Shift” keys need to be held down when pressing the “Enter” key or 

clicking the OK button. 

 

 

 

Results format 

slope y-intercept 

std error in slope std error in y-intercept 

Typical results 

9.834 -0.08318 

0.196611 0.009233 
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In the table below are the results of the LINEST worksheet function applied to the 

experimental data shown above. This allows you to analyze the precision or repeatability of 

your experiment. 

 Slope y-intercept 

Value 9.31197 -0.05724 

Uncertainty 0.09869 0.00554 

 

Slope = 9.31 ± 0.10 m/s
2
   Percent Uncertainty =  ±1.1% 

Y-intercept = -0.0572 ± 0.0055 m/s
2
  Percent Uncertainty  =  ±9.6% 

 

The ±1.1% uncertainty in the value of the slope tells you that the experiment is very 

repeatable. If you repeat the experiment again there is a 68.3% chance that your slope value 

will fall in the interval 9.21 to 9.41 m/s
2
 (9.31 ± 0.10 m/s

2
). This is a precision (repeatability) 

measure and depends on the experimental design, the equipment itself and your ability to use 

the equipment and to make measurements.  

 

Next the accuracy of the results need to be examined. This requires the comparison of your 

results to a standard or to a known value. To compute the percent error you need to compare 

your experimental slope with known value of g = 9.80 m/s
2
 

Percent Error = (Slope - g)*100/g = -5.0% 

The result of the calculation shows that your experimental value is 5.0% below the accepted 

value of g. This is almost 5 times the value of the percentage uncertainty in your slope 

measurements. Therefore this is a statistically significant difference and cannot be explained 

away by bad experimental technique.  

 

Analysis 

Where was the problem? Go back and list every quantity that you measured and estimate the 

uncertainty in those measurements. There were two basic measurements: masses and 

accelerations.  
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Mass 

A classic mistake is to forget to include the mass of the weight hanger but we will assume that 

wasn’t the case here because your lab notes indicated that it was included. The masses are 

stable and don’t change with time, their values are engraved into the masses themselves and 

an electronic scale is available that will determine the mass values to within ±0.05 grams. For 

masses of ~50 grams this represents an uncertainty of  ±0.05*100/50 = ±0.10%. So, the 

problem doesn’t seem to be in the masses.  

 

Accelerations 

The problem would appear to be in the determination of the acceleration of the Atwood 

system of masses. This variable was measured electronically using a Smart Pulley (with a  

photogate) and the Logger Pro data system. The distance is measured and the velocity and 

acceleration are calculated from the distance-time data. The rotation of the 10-spoked pulley 

breaks the infrared light beam in the photogate. Every time this basic event happens the data 

acquisition program adds one-tenth of the pulley circumference to the distance traveled by the 

masses, and records the time. The timing element is electronic and very precise which brings 

us to the “one-tenth of the circumference” number. There is a programmed-in value or the 

user can enter his/her own number. So the question becomes: How well is this number 

known? For the case of the string in the groove the default value is 0.015m or 15mm. Just 

using ±one-half of the least significant digit as the measure of uncertainty gives a percent 

uncertainty of ±0.5*100/15 = ±3.3%. 

 

The accelerations are determined from the slope of the velocity versus time curves. The 

uncertainties in these acceleration slopes are determined by the Logger Pro software. These 

percent uncertainties are typically under 1%. 

 

Massless Pulley 

Although it was assumed that the Smart Pulley was massless it actually has a mass of 5.5g. 

Using the value of the pulley’s moment of inertia of 1.8x10
-6

 kg-m
2
, the mass 5.5g and its 
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radius of 2.50 cm, it is possible to determine that its β factor is 0.524 which is close to ½. 

Hence it behaves as a solid disk.  

 

If the mass of the pulley is included in the analysis the acceleration formula becomes. 

Since the mass of the pulley is quite a bit smaller than the hanging masses we can 

approximate the acceleration by the expression below. 

This shows that the simple acceleration (massless pulley) is reduced by about 2.5%. 

 

Separate the Friction 

The real culprit here with the experimental design. The fact that the total mass in the system 

was changing, i.e. (m1 + m2) was NOT held constant, meant that the y-intercept of our trend 

line was not really constant. Therefore “a” was not just a function of the ratio (m2 - m1) /(m1 + 

m2), but also 1//(m1 + m2) arising from the friction term.  

 

The percent uncertainty of ±9.6% in the y-intercept tells us that the friction was non-zero. The 

non-zero value of the y-intercept shows that there was a measurable amount of friction at 

work in the experiment. If this percent uncertainty had been close to 100% then it could be 

argued that the friction was not measurable in our experiment. Don’t make the mistake of   

saying “the friction was zero” because we know that there is always friction present. The only 

question is whether it will impact the results of your experiment. 

 

The y-intercept can be shown to be algebraically equal to f /(m1 + m2) if we include the 

friction in our starting equation as a linear term. Knowing the values of m1 and m2 might 

allow use to estimate the value of the frictional force but in this particular experiment the 

value of m1 + m2 was not kept constant. However, we can take the average value in this case 

(m1 + m2 )Average = 116 grams or 0.116 kg. This will yield a frictional force estimate of 
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0.00664N and by dividing by “g” (9.80 m/s2) we get an equivalent mass of 0.677 grams, 

which is a little over 1% of the size of the masses we were using in this experiment. 

 

The linear trend analysis, that we will employ, separates the slope from the y-intercept. 

Therefore we can determine the value of g without the friction causing a problem. 

 

Combining the Diameter Uncertainty and the Mass of the Pulley 

 

This accounts for much of the 5% error found I the Atwood data.  

 

The Solution? 

In this case we have identified a possible “circumference” measurement problem and a 

massive pulley contribution. There is also a source of variation due to experimental design. A 

solution is to modify the experiment and require that the sum of the masses remain constant 

during the experiment. In the version of the lab you will be doing the sum of the masses will 

remain constant. Will the problem then go away?  
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% Slope Error % %

% Slope Error 3.3% 2.5%

% Slope Error 4.14%
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