MATD 0370 (ELEMENTARY ALGEBRA)

EXERCISE SET 4.1

For each of the following pairs of points, do the following:
(a.) Plot and label the points (remember to write the coordinates in parentheses).
(b.) Draw a line through the points, putting an arrow on each end of the line.
(c.) Determine the x-intercept of the line (i.e., at what point does the line cross the x-axis?).
(d.) Determine the y-intercept of the line (i.e., at what point does the line cross the y-axis?).
(e.) Determine the rise of the line, when moving along the line from the point given first in the problem to the point given second.
(f.) Determine the run of the line, when moving along the line from the point given first in the problem to the point given second.
(g.) Determine the slope of the line, and simplify your answer if possible.

1. $(-3,2)$ and (1,6)
(c.) x-intercept: \qquad
(d.) y-intercept: \qquad
(e.) rise: \qquad
(f.) run: \qquad
(g.) slope: \qquad

2. (4, 8) and (-2, -4)
(c.) x -intercept: \qquad
(d.) y-intercept: \qquad
(e.) rise: \qquad
(f.) run: \qquad
(g.) slope: \qquad

3. (-2, 10) and (6, -10)
(c.) x -intercept: \qquad
(d.) y-intercept: \qquad
(e.) rise: \qquad
(f.) run: \qquad
(g.) slope: \qquad

4. $(3,7)$ and ($3,-1)$
(c.) x -intercept: \qquad
(d.) y-intercept: \qquad
(e.) rise: \qquad
(f.) run: \qquad
(g.) slope: \qquad

5. (-1, 2$)$ and (5, -4)
(c.) x-intercept: \qquad
(d.) y-intercept: \qquad
(e.) rise: \qquad
(f.) run: \qquad
(g.) slope: \qquad

6. (-7, 3) and (1, 3)
(c.) x-intercept: \qquad
(d.) y-intercept: \qquad
(e.) rise: \qquad
(f.) run: \qquad
(g.) slope: \qquad

7. (-6, -2) and (3, 4)
(c.) x-intercept: \qquad
(d.) y-intercept: \qquad
(e.) rise: \qquad
(f.) run: \qquad
(g.) slope: \qquad

Based on your observations in the problems above and on your other experiences, fill in the blanks below to make true statements.
8. The "run" of a line can be calculated as the difference of the \qquad coordinates of two points on the line.
9. All points on a vertical line have the same \qquad coordinate.
10. The "run" of a vertical line has value \qquad .
11. The "rise" of a line can be calculated as the difference of the \qquad coordinates of two points on the line.
12. All points on a horizontal line have the same \qquad coordinate.
13. The "rise" of a horizontal line has value \qquad .
14. The slope of a vertical line is \qquad and the slope of a horizontal line is
\qquad -

ANSWERS:

1. $(-3,2)$ and (1,6)
(c.) x-intercept: $(-5,0)$
(d.) y-intercept: $(0,5)$
(e.) rise: 4
(f.) run: 4
(g.) slope: $\frac{4}{4}=1$

2. (4, 8) and ($-2,-4$)
(c.) x-intercept: $(0,0)$
(d.) y-intercept: $(0,0)$
(e.) rise: -12
(f.) run: -6
(g.) slope: $\frac{-12}{-6}=2$

3. (-2, 10) and (6, -10)
(c.) x -intercept: (2,0)
(d.) y-intercept: $(0,5)$
(e.) rise: -20
(f.) run: 8
(g.) slope: $\frac{-20}{8}=-\frac{5}{2}$
4. $(3,7)$ and ($3,-1)$
(c.) \quad-intercept: $(3,0)$
(d.) y-intercept: None
(e.) rise: -8
(f.) run: 0
(g.) slope: $\frac{-8}{0}=$ undefined
5. (-1, 2$)$ and (5, -4)
(c.) \quad-intercept: (1,0)
(d.) y-intercept: $(0,1)$
(e.) rise: -6
(f.) run: 6
(g.) slope: $\frac{-6}{6}=-1$

ANSWERS:

6. (-7, 3) and (1, 3)
(c.) x-intercept: None
(d.) y-intercept: (0,3)
(e.) rise: 0
(f.) run: 8
(g.) slope: $\frac{0}{8}=0$

7. ($-6,-2$) and (3, 4)
(c.) x -intercept: $(-3,0)$
(d.) y-intercept: $(0,2)$
(e.) rise: 6
(f.) run: 9
(g.) \quad slope: $\frac{6}{9}=\frac{2}{3}$

8. The "run" of a line can be calculated as the difference of the \underline{x} coordinates of two points on the line.
9. All points on a vertical line have the same \underline{x} coordinate.
10. The "run" of a vertical line has value zero.
11. The "rise" of a line can be calculated as the difference of the $\underset{y}{ }$ coordinates of two points on the line.
12. All points on a horizontal line have the same y coordinate.
13. The "rise" of a horizontal line has value zero.
14. The slope of a vertical line is undefined and the slope of a horizontal line is zero.
