1. The product of two consecutive integers is 210 . Find the two integers.
2. The sum of the squares of two consecutive odd integers is three less than eleven times the larger. Find the two integers.
3. A triangle has a base that is 10 cm more than its height. The area of the triangle is 12 square cm . Find the height and the base.
4. Find the dimensions of a rectangular picture whose length is 3 inches shorter than twice its width and whose area is 35 square inches.
5. Find the lengths of the sides of a right triangle if the long leg is 7 cm longer than the short leg and the hypotenuse is 1 cm longer than the long leg.

ANSWERS:

1) The integers are 14 and 15 , or the integers are -15 and -14 . (NOTE: You must give both parts of the answer.) To set up this problem, let $x=$ the first integer. Then $x+1=$ the next consecutive integer. The equation is $x(x+1)=210$.
2) The integers are 5 and 7. (NOTE: -1.5 and 0.5 are not integers.) To set up this problem, let $x=$ the first integer. Then $x+2=$ the next consecutive odd integer. The equation is $x^{2}+(x+2)^{2}=11(x+2)-3$.
3) The height of the triangle is 2 cm and the base is 12 cm . To set up this problem, let x $=$ the base. Then $x-10=$ the height. The formula for area of a triangle is $A=1 / 2$ bh so the equation is $1 / 2 x(x-10)=12$. Hint: Multiply both sides of the equation by 2 to clear the fraction, which makes the equation $x(x-10)=24$.
4) The width of the rectangle is 5 inches and the length is 7 inches. To set up this problem, let $x=$ the width. Then $2 x-3=$ the length. The formula for area of a rectangle is $A=I w$ so the equation is $(2 x-3) x=35$, or $x(2 x-3)=35$.
5) The lengths of the sides of the triangle are $5 \mathrm{~cm}, 12 \mathrm{~cm}$, and 13 cm . (NOTE: The hypotenuse of a right triangle is always the longest side.) To set up this problem, let $x=$ the length of the short leg. Then $x+7=$ the length of the long leg, and $x+7+1$ $=x+8=$ the length of the hypotenuse. Use the Pythagorean Theorem $a^{2}+b^{2}=c^{2}$ to write the equation $x^{2}+(x+7)^{2}=(x+8)^{2}$.
