Solutions to Application Problems assigned in class (set 1)

1) Find the area between \(\sin x \) and \(\cos x \) (one "cell"):

2) Find the volume of a pyramid with an equilateral triangle base of side length 2 and height 6:

3) Find the volume of the solids of revolution:
 a. between \(y = x^2 \) and \(y = x^4 \), about \(x = 7 \):
 b. between \(y = x^3 \) and \(y = 4x \), about \(y = b \) (I said \(y = 20 \) in the morning class and changed it to something else, which I don't remember, in the afternoon class; this formula is valid for any \(b \geq 8 \).
 c. between \(y = \ln x \), \(y = 0 \), \(x = 2 \), about \(x = -3 \):

4) Find work:
 a. Roll up a 40 ft chain 1/4 of the way, with a 20 lb bucket on the end (chain weighs 2 lb/ft)
 b. Pump all the water out of a cone (with sharp end down) with radius 2 ft, height 8 ft
 c. Pump half the water out of a sphere of radius 5 ft

5) Find the fluid force ("hydrostatic force"):
 a. [Diagram of a triangle with dimensions 2 m, 2 m, 3 m]