$S_N 1$, $S_N 2$, E^1 and E^2 Reactions

Whether an alkyl halide will undergo an $S_N 1$, $S_N 2$, E^1 or an E^2 reaction depends upon a number of factors. Some of the more common factors include the natures of the substrate carbon skeleton, the solvent, the leaving group, and the nature of the nucleophile.

S_N2: TERTIARY ALKYL HALIDES NEVER SHOW $S_N 2$ REACTIONS

- The order of reactivity is as follows: Methyl > 1 > 2
- Sterically less hindered substrates have faster rates in SN^2

Nucleophile: If the reacting atom is the same in a series, nucleophilicity* parallels basicity (i.e. -OH > -OCH3 > -OCH2CH3 > H2O)

- For the halogens in **GAS PHASE**: F->Cl->Br->I-
- For the halogens in **SOLUTION**: I-> Br-> Cl-> F- (due to solvation of nucleophile, rendering it inactive)
- Negatively charged nucleophiles give neutral products
- Neutral nucleophiles give cationic products

In **SOLUTION** nucleophilicity increases down a column in the periodic table (i.e. -OCH3 > -SCH3 > -SeCH3)

• Anionic nucleophiles are usually stronger than neutral ones

Leaving Group: Best leaving groups are those that best accommodate a negative charge (large anions such as I-)

The best leaving groups are WEAK BASES

• the worst leaving groups are:

F-, OH-, OCH3-, CN-, N3-, NH2-

• The best leaving groups are: H2O, CH3OH, -OTs, -I

Notes:

The SN^2 reaction is bimolecular - it depends on amounts of nucleophile and leaving group

 SN^2 reaction goes with inversion about the stereogenic carbon.

Solvent: **Polar protic**¹ solvents are the **worst** for SN²; they solvate the nucleophile so it cannot attack.

Polar aprotic solvents **stabilize the transition state** and speed SN^2 reactions up. Polar aprotic solvents are DMSO, DMF, CH3CN, and Hexamethylphosphoramide, HMPA ([(CH₃)₂N]₃PO)

¹**Polar protic** solvent has a hydrogen atom attached to a strongly electronegative element (e.g. oxygen) that forms hydrogen bonds. On the other hand, **polar aprotic solvents** are those solvents whose molecules do not have a hydrogen atom that's attached to an atom of an electronegative element. **Polar protic** solvent solvate cations and anions effectively while **aprotic solvents** do not solvate anions to any appreciable extend.

SN¹ Reaction Substrate: SN1 reactions work best on a TERTIARY! THERE IS NO SN¹ ON A PRIMARY!! Order of reactivity: 3 > 2

Nucleophile: Has **NO** effect upon the rate of reaction!! Rate limiting step does not include the nucleophile!!

Leaving Group: Same as for SN2 reactions!!

Solvent: Polar aprotic solvents work well. **Polar protic** solvents work even better because they stabilize the carbocation intermediate

Notes: SN¹ is unimolecular and depends only on amount of substrate. SN¹ goes through a carbocation intermediate. Stereochemistry is lost during an SN¹ reaction and the products usually display a small excess of inversion product **Watch out for CARBOCATION REARRANGEMENTS!**

E² Reaction

Substrate: Requires anti-peri-planar geometry (two or more groups on the opposite side) between the halide and hydrogen Relative rates of reaction: 3 > 2 > 1Stereochemistry: The stereochemistry of the starting material will determine whether you get the Z or E isomer when possible Small strong bases always give the Zaitsev product Bulky strong bases always give the Hoffman product

Notes: This is a bimolecular reaction whose rate depends on the base and substrate used. Whenever you have a basic nucleophile used on a 2 alkyl halide, you can expect a mixture of the E^2 and SN^2 reaction with the E^2 being the major product **Bases**: The following bases give E^2 on 3° and 2° alkyl halides

⁻OH, ⁻OCH3, ⁻OCH2CH3, ⁻OC (CH3)3, CN⁻. Remember that the secondary halides will also give SN² minor product

E¹ Reaction

Substrate: Works best on 3° (and 2°) substrates Does not require the antiperiplanar geometry!

Stereochemistry: This reaction proceeds through a carbocation intermediate! Typically favors the Zaitsev product

Watch out for CARBOCATION REARRANGEMENTS!

Notes: On 3 alkyl halides, this reaction competes with the SN^1 For a given SN^1 reaction, the minor product will always include the E^1 product

Nucleophiles

SN² nucleophiles (only on Methyl, 1 and 2 alkyl substrates): $N3^{-}$, I^{-} , NH_3 , Br^{-} , CI^{-} , CN^{-} , HS^{-} SN^1 nucleophiles with E^1 minor products (only on 3° alkyl substrates) H2O, CH3OH, CH3CH2OH, HX (only on tertiary alcohols) E^1 bases (only on 3° alkyl halides) H2SO4 with H2O and heat gives purely E1 elimination SN1 nucleophiles also give minor E1 products \mathbf{E}^2 bases (only with 3 and 2 alkyl halides) -OH, -OCH3, -OCH2CH3, -OC (CH3)3, CN- (only on 3 alkyl halide) **Substrates Primary**: SN² reaction with good nucleophiles E^2 with **VERY** strong bases NO E^1 or $SN^1!!$ **Secondary**: With basic nucleophiles, get mixture of E^2 (major) and SN^2 (minor) With pure nucleophiles (not basic) get only SN^2 With weak nucleophiles, get SN^1 with minor E^1 **Tertiary**: With strong bases, get E^2 exclusively With weak nucleophiles, get SN^1 with minor E^1 product

* Basicity is the ability of an atom or molecule to donate a lone pair of electrons to a proton (H^+) . Nucleophilicity is the ability of an atom or molecule to donate a lone pair of electrons to carbon.

The following trends can be noted:

1. Species with negative charges are stronger nucleophiles than corresponding uncharged species

 $-OH > H_2O$ $-SH > H_2S$ $-NH_2 > NH_3$

2. Nucleophilicity decreases going to the right in the periodic table. More electronegative elements tend to "hold" their electrons more tightly

 $NH_3 > H_2O$ -OH > -F $R_3P > R_3S$

3. Nucleophilicity increases going down the periodic table as polarizability increases. -I > -Br - CI > -F -SeH > -SH > -OH $R_3P > R_3N$