Chapter 2

Infrared (IR) Spectroscopy

Dipole moment of some compounds

Compound	Dipole Moment	Compound	Dipole Moment
NaCl	9.0	H ₂ O	1.85
CH_3NO_2	3.45	CH ₃ OH	1.70
CH ₃ CI	1.87	CH ₃ COOH	1.52
CH ₃ Br	1.79	NH_3	1.47
CH ₃ I	1.64	CH ₄	0
CHCl ₃	1.02	CCI ₄	0

12. Summary of Important Families of Organic Compounds

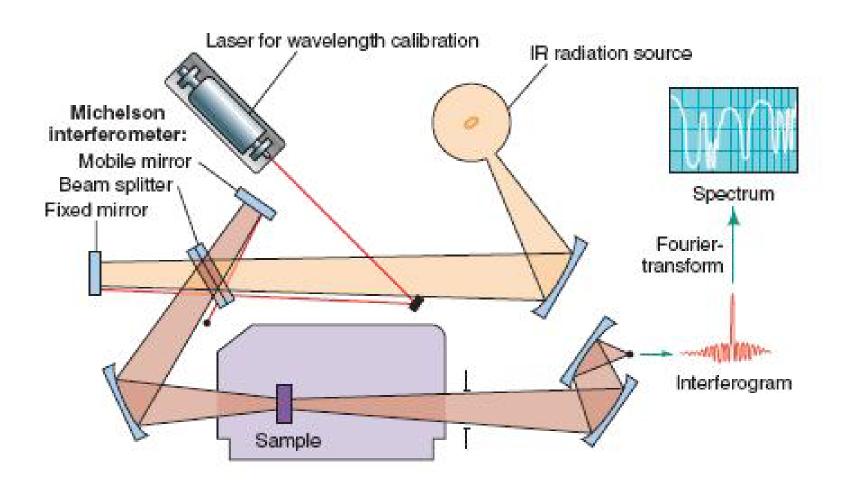
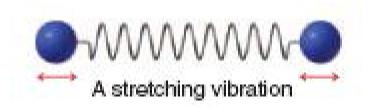

TABLE 2.3	Importan	t Families of	Organic Co	npounds			
				Family			
	Alkane	Alkene	Alkyne	Aromatic	Haloalkane	Alcohol	Ether
Functional group	C—H and C—C bonds	_c=c(—C≡C—	Aromatic ring	-c- <u>;</u> :	—c—ён	-ç-ö-ç-
General formula	RH	RCH=CH ₂ RCH=CHR R ₂ C=CHR R ₂ C=CR ₂	RC≡CH RC≡CR	ArH	RX	ROH	ROR
Specific example	CH₃CH₃	CH ₂ =CH ₂	НС≡СН		CH ₃ CH ₂ CI	CH₃CH₂OH	CH ₃ OCH ₃
IUPAC name	Ethane	Ethene	Ethyne	Benzene	Chloroethane	Ethanol	Methoxymethane
Common name ^a	Ethane	Ethylene	Acetylene	Benzene	Ethyl chloride	Ethyl alcohol	Dimethyl ether

TABLE 2.3 Important Families of Organic Compounds (cont.)

				Family			
	Amine	Aldehyde	Ketone	Carboxylic Acid	Ester	Amide	Nitrile
Functional group	-¢-n:	, с _с_н	-ç_c_ -c	^с∕ён _с∕ён	° ^c\=-c-	_c _ ÿ	—C≡N:
General formula	RNH ₂ R ₂ NH R ₃ N	O RCH	O RCR'	O RCOH	O RCOR'	O RCNH₂ O RCNHR' O RCNR'R"	RCN
Specific example	CH ₃ NH ₂	O ∥ CH₃CH	о сн _з ссн _з	о ∥ сн₃сон	CH³COCH³	O CH ₃ CNH ₂	CH3C≡N
IUPAC name	Methanamine	Ethanal	Propanone	Ethanoic acid	Methyl ethanoate	Ethanamide	Ethanenitrile
Common name	Methylamine	Acetaldehyde	Acetone	Acetic acid	Methyl acetate	Acetamide	Acetonitrile

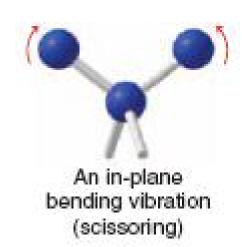
Ch. 2 - 4

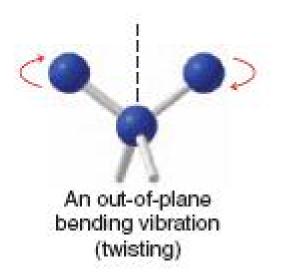
15. Infrared Spectroscopy




* The position of an absorption band (peak) in an IR spectrum is specified in units of wavenumbers (\overline{v})

$$\overline{\mathbf{v}} = \frac{1}{\lambda}$$


$$\therefore v = \frac{c}{\lambda}$$


$$\therefore \Delta E = \frac{hc}{\lambda}$$

Intensity: s = strong, m = medium, w = weak, v = variable

Thensity: 3 - strong, in - mediani, w - weak, v - variable				
Group	Freq. Range (cm ⁻¹)	Intensity		
Alkyl				
C-H (stretching)	2853-2962	(m-s)		
Alkenyl				
C-H (stretching)	3010-3095	(m)		
C=H (stretching)	1620–1680	(v)		
cis-RCH=CHR	675–730	(s)		
<i>trans</i> -RCH=CHR	960–975	(s)		
Alkynyl				
<pre>≡C-H (stretching)</pre>	~3300	(s)		
C≡C (stretching)	2100–2260	(v)		
		Ch 2		

Ch. 2 - 8

Intensity: s = strong, m = medium, w = weak, v = variable

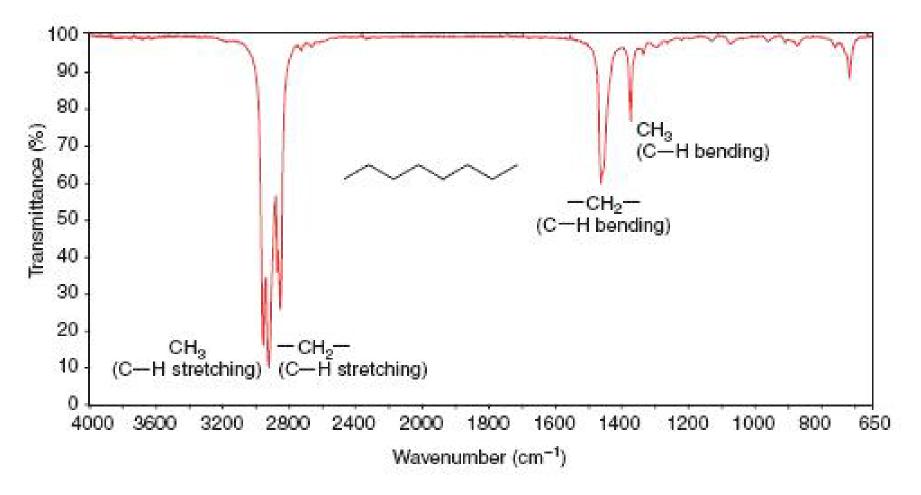
Group	Freq. Range (cm ⁻¹)	Intensity
Aromatic		
Ar-H (stretching)	~3300	(v)
 monosubstituted 	690–710	(very s)
	730–770	(very s)
 o-disubstituted 	735–770	(s)
- m-disubstituted	680-725	(s)
	750–810	(very s)
 p-disubstituted 	800-860	(very s)

Intensity: s = strong, m = medium, w = weak, v = variable

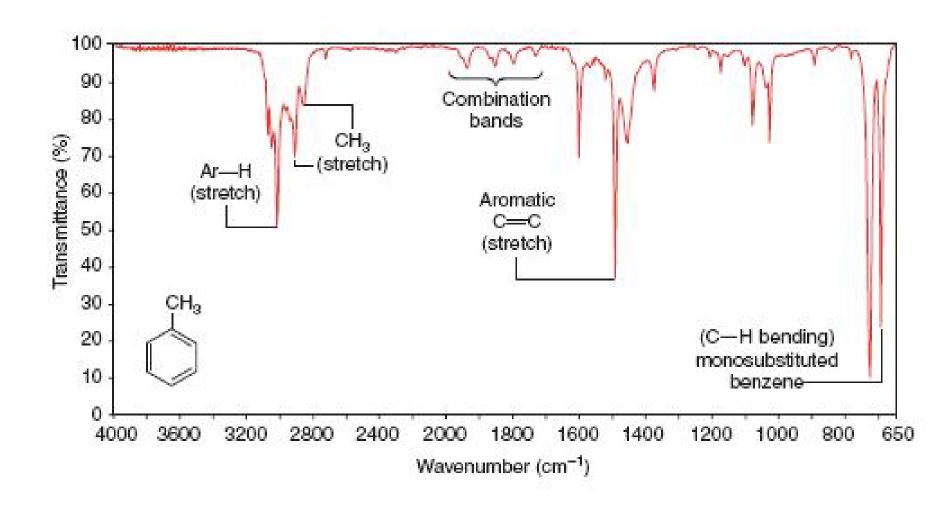
interiority is strong,	Trodicing to trodic	, variable
Group	Freq. Range (cm ⁻¹)	Intensity
Alcohols, Phenols & Ca	rboxylic Acids	
O-H (stretching) - alcohols & phenols (dilute solutions)	3590–3650	(sharp, v)
- alcohols & phenols (hydrogen bonded)	3200–3550	(broad, s)
- carboxylic acids (<i>hydrogen bonded</i>)	2500–3000	(broad, v)

Intensity: s = strong, m = medium, w = weak, v = variable

Group	Freq. Range (cm ⁻¹)	Intensity
Aldehydes, Ketones,	Esters, Carboxylic Acids	s, Amides
C=O (stretching)	1630–1780	(s)
Aldehydes	1690–1740	(s)
Ketones	1680–1750	(s)
Esters	1735–1750	(s)
Carboxylic Acids	1710–1780	(s)
Amides	1630–1690	(s)
Amines		
N-H	3300-3500	(m)

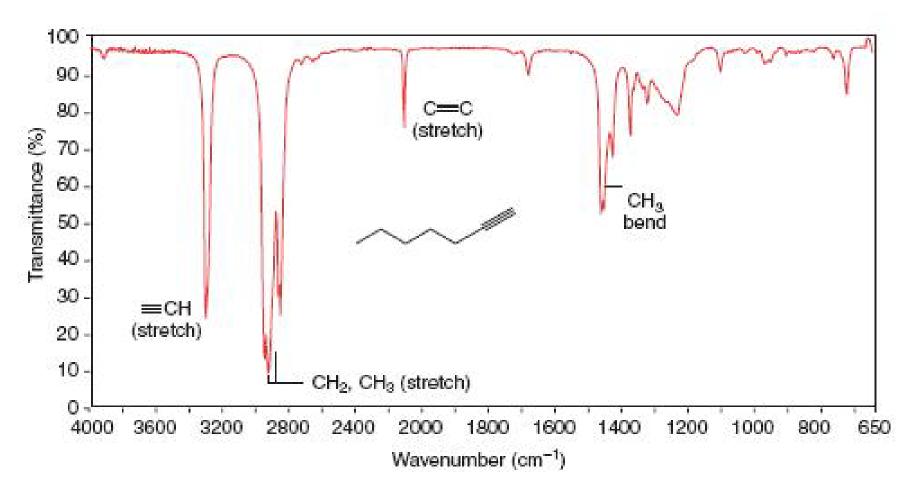

Nitriles

C≡N 2220-2260

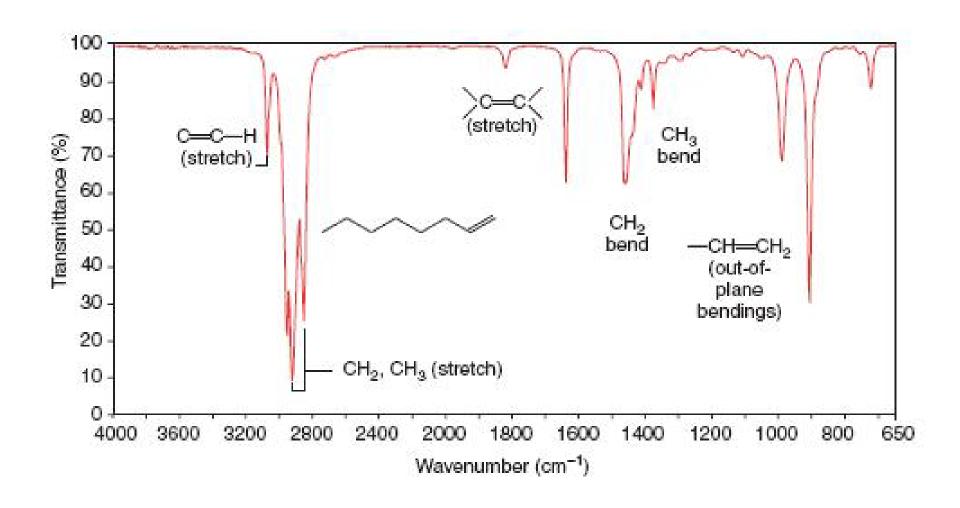

260 (m)

16. Interpreting IR Spectra

IR spectrum of octane

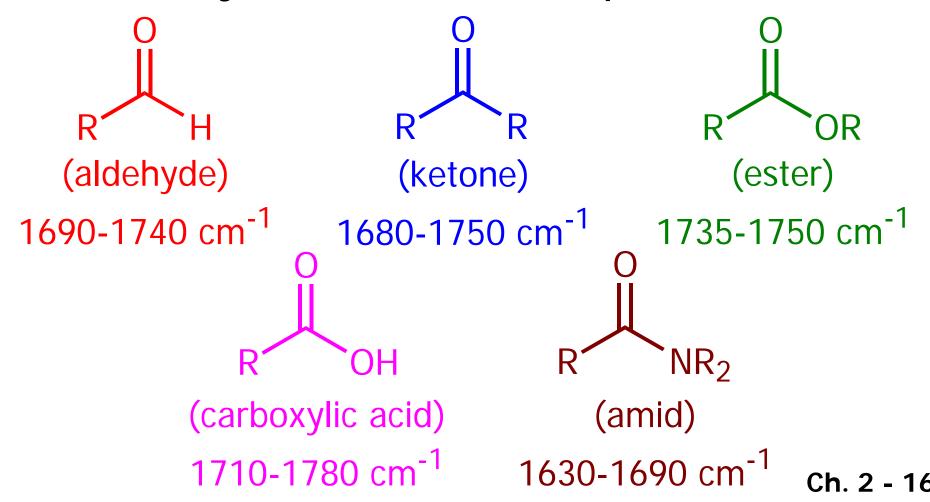


IR spectrum of toluene

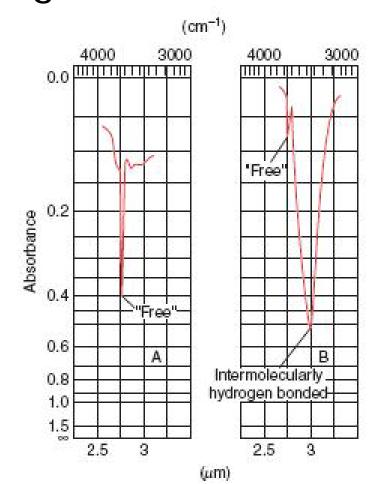


16B. IR Spectra of Hydrocarbons

IR spectrum of 1-heptyne



IR spectrum of 1-octene



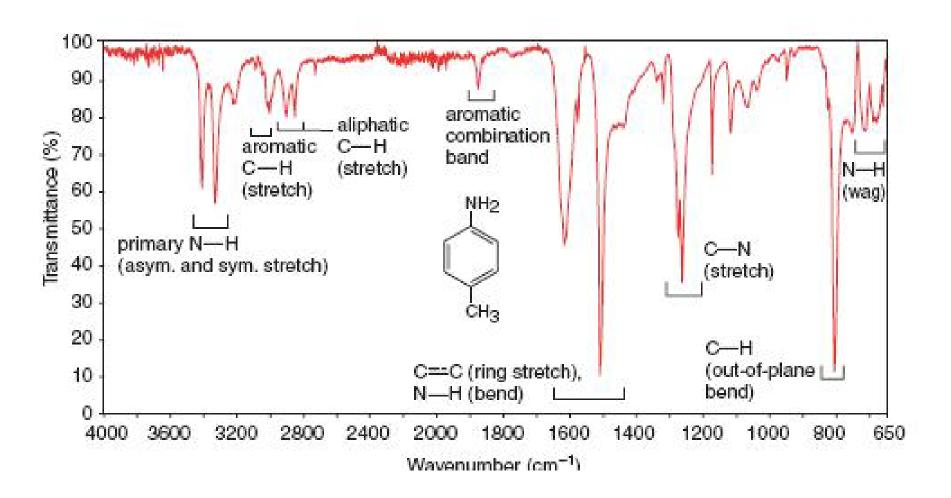
16B. IR Spectra of Some Functional Groups Containing

Carbonyl Functional Groups

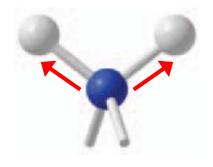
- Alcohols and phenols
 - The IR absorption of an alcohol or phenol O–H group is in the 3200–3550 cm⁻¹ range, and most often it is broad

Carboxylic Acids

IR spectrum of propanoic acid

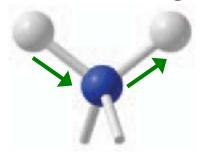


Amines

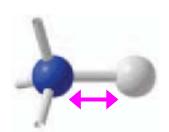

- 1° and 2° amines give absorptions of moderate strength in the 3300–3500 cm⁻¹ region
- 1° amines exhibit two peaks in this region due to symmetric & asymmetric
- stretching of the two N–H bonds
- 2° amines exhibit a single peak
- 3° amines show no N–H absorption because they have no such bond
- A basic pH is evidence for any class of amines

Amines

IR spectrum of 4-methylaniline



RNH₂ (1° Amine) Two peaks in 3300–3500 cm⁻¹ region



symmetric stretching

R₂NH (2° Amine) One peak in 3300–3500 cm⁻¹ region

A END OF CHAPTER 2 A