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Figure 8.1 The effect of electron spin.
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_y of Quantum Numbers of Electrons in Atoms

Name Symbol Permitted Values Property

principal n positive integers (1, 2, 3, ...) orbital energy (size)

angular | integers from O to n-1 orbital shape (The | values

momentum 0, 1, 2, and 3 correspond to
S, p, d, and f orbitals,
respectively.)

magnetic m, integers from -1 to O to +I orbital orientation

spin M, +2 or -2 direction of e spin




Quantum Numbers and The Exclusion Principle

Each electron in any atom is described completely by a
set of four quantum numbers.

The first three quantum numbers describe the orbital, while the
fourth quantum number describes electron spin.

Pauli’'s exclusion principle states that no two electrons in
the same atom can have the same four quantum numbers.

An atomic orbital can hold a maximum of two electrons
and they must have opposing spins.



Factors Affecting Atomic Orbital Energies

The energies of atomic orbitals are affected by
— nuclear charge (Z) and
— shielding by other electrons.

A higher nuclear charge increases nucleus-electron
Interactions and lowers sublevel energy.

Shielding by other electrons reduces the full nuclear
charge to an effective nuclear charge (Z.4).
— Z Is the nuclear charge an electron actually experiences.

Orbital shape also affects sublevel energy.
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Greater nuclear charge lowers
sublevel energy.
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1s electron from He* than from H.



Shielding and Orbital Energy

* Electrons in the same energy level shield each other to
some extent.

e Electrons in inner energy levels shield the outer

electrons very effectively.

— The further from the nucleus an electron is, the lower the Z . for
that particular electron.
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Figure 8.3

Shielding and energy levels.
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Figure 8.4

energy.
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Splitting of Levels into Sublevels

Each energy level is split into sublevels of differing energy.
Splitting is caused by penetration and its effect on shielding.

For a given n value, a lower | value indicates a lower
energy sublevel.

Order of sublevel energies: s<p <d<f
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Order for filling energy sublevels with
electrons.

In general, energies of sublevels increase as
nincreases (1 <2< 3, etc.)
and as | increases (s <p <d <f).

As n increases, some sublevels overlap.



Electron Configurations and Orbital Diagrams

Electron configuration is indicated by a shorthand notation:

He— # of electrons in the sublevel

nl
— ass,p,d,f

Orbital diagrams make use of a box, circle, or line for each
orbital in the energy level. An arrow is used to represent an
electron and its spin.

NGO
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Building Orbital Diagrams

The aufbau principle is applied — electrons are always
placed in the lowest energy sublevel available.

H(Z=1)1st |1
1s

The exclusion principle states that each orbital may
contain a maximum of 2 electrons, which must have
opposite spins.

He (Z = 2) 1s2 Tl
1s




Building Orbital Diagrams

Hund’s rule specifies that when orbitals of equal energy
are available, the lowest energy electron configuration has
the maximum number of unpaired electrons with parallel

spins.

N (Z =7) 1s°2s°2p?3

(T n
2S 2p




Sample Problem 8.1 Determining Quantum Numbers from

Orbital Diagrams

PROBLEM: Write a set of quantum numbers for the third electron and
a set for the eighth electron of the F atom.

PLAN: Identify the electron of interest and note its level (n), sublevel,
(1), orbital (m;) and spin (m,). Count the electrons in the order in
which they are placed in the diagram.

SOLUTION:

Fz=91s2s20° |10 || (1|1 |7
s 2s

2p
For the 39 electron: n=2,1=0, m; =0, m_ = +%

For the 8" electron: n=2,1=1, m;=-1, m_ =-%



Figure 8.7 Depicting orbital occupancy for the first 10 elements.
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Partial Orbital Diagrams and
Condensed Configurations

A partial orbital diagram shows only the highest energy
sublevels being filled.

Al (Z = 13) 1s22s22p83s23p! Tt
3s 3p

A condensed electron configuration has the element
symbol of the previous noble gas in square brackets.

Al has the condensed configuration [Ne]3s%3p?



agrams and Electron Configurations®
in Period 3.

Atomic Partial Orbital Diagram Full Electron Condensed Electron
Number Element (3s and 3p Sublevels Only)  Configurationt Configuration
3s 3p
11 Na T [15%25%2p%] 35 [Ne] 3s'
12 Mg T [1522522p%] 35 [Ne] 35
13 Al 1F (y [15%25%2p%] 35%3p! [Ne] 3s%3p!
14 Si ™ (il [15%25%2p%] 35%3p? [Ne] 3s%3p?
15 P (i) Bl R; [15%25%2p®] 35%3p° [Ne] 3s%3p°
16 S - R [15%25%2p%] 35%3p* [Ne] 3s°3p*
17 Cl e [l 1 [1525%2p°] 35%3)° [Ne] 3523°
18 Ar 701 I [ [15225%2p%] 3523 [Ne] 3523

"Colored type indicates the sublevel to which the last electron is added.



Electron Configuration and Group

Elements in the same group of the periodic table have the
same outer electron configuration.

Elements in the same group of the periodic table exhibit
similar chemical behavior.

Similar outer electron configurations correlate with
similar chemical behavior.



Figure 8.8

Condensed electron configurations in the first
three periods.
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Figure 8.9 Similar reactivities in a group.
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in Period 4.

grams and Electron Configurations”

Atomic Partial Orbital Diagram Full Electron Condensed Electron
Number Element (4s, 3d, and 4p Sublevels Only) Configuration Configuration
4s 3d 4p
19 K 2 15225%2p%3523p°4s! [Ar] 45"
20 Ca Ell 1522522p%3573p0%4 2 [Ar] 452
21 Sc il A 15%25%2p%3523p%45%34" [Ar] 45?3
22 Ti ol =l 1522522p%35%3p%45%3 42 [Ar] 45234
23 v T AR 1522522p%35%3p%45%3d [Ar] 4534°
24 Cr 1 AR EAEAE) 1522522p%35%3p%45134° [Ar] 45'3d°
25 Mn R AR AEN RS 1522522p®35%3p%45%3d° [Ar] 4523d°
26 Fe I EHEIEE 15225%2p%35*3p%45%341° [Ar] 45%34°
27 Co T EIERIES 15225°2p°35?3p®4s%3d7 [Ar] 45*3d”

"Colored type indicates the sublevel to which the last electron is added.



Atomic
Number Element

agrams and Electron Configurations®
in Period 4.

Partial Orbital Diagram

(4s, 3d, and 4p Sublevels Only)

Full Electron
Configuration

Condensed Electron
Configuration

28
29
30
31
32
33
34
35
36

Ni
Cu
Zn
Ga
Ge
As
Se
Br

Kr

N ]

] [refee]re]re]ny

N NN
R
R EEE
R RE
NN N e
N[N e
N [

1522522p%3523p°4s%3d®
15225%2p®3523p%45134"°
1522522p%3523p®45234'°
15%2522p°35%3p%45%3d"%4p!
15225%2p®3523p°45%3d"04)?
15%25%2p®3523p®4523d'%4p>
15225%2p%3523p%45%3d'04p*
15225%2p®3523p%45%34d'04))°

1522522p®35%3p%45%3d1°4)°

[Ar] 45%3d®
[Ar] 4s'34'°
[Ar] 45%34"°
[Ar] 4523d'04)!
[Ar] 45%3d"%4p?
[Ar] 45%3d'%4p3
[Ar] 4523d"%4p*
[Ar] 45%3d'%4p°

[Ar] 45%3d'%4)%

"Colored type indicates the sublevel to which the last electron is added.



Figure 8.10

Period number: highest occupied energy level

A periodic table of partial ground-state electron

configurations.
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hafeouD Main-Group Elements

Elements (p block)

(s block) p

1A 8A
(1) (18)
ns! ns2np®
1 2A 3A 4A 5A B6A 7A 2
H (2 (13) | (14) | (15) | (16) [ (17) | He
1s! ns? ns2np' | ns2np? | ns2np3| ns2np? | ns2npS| 152
3 4 5 6 7 8 9 10
Li Be » B C N 0 F Ne
25! 252 Transition Elements 2522p! | 2522p2 | 2522p3 | 2522p% | 2522p" | 2522p6

(d block)

5l 12 13 14 15 16 17 18
Na | Mg | 38 | 48 [ 58 | 6B | 78 [——88—+| 1B | 28 | Al | Si | P S | Cl | Ar
3s! 3s2 3) (4) (5) (8) (7) (8) (9)  (10) | (11) | (12) |3s23p! | 3523p2 | 3523p3 | 3523p* | 3523p° | 352300
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
K Ca | Sc Ti Vv Cr | Mn | Fe | Co Ni Cu | Zn | Ga | Ge | As | Se Br Kr
45! 452 | 45234 | 452302 | 452303 | 451305 | 452305 | 452308 | 452307 | 452308 | 4513010452301 4524p | 4524p2 | 4524p3 | 4524p? | 4524p5 | 4524p8
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
Rb Sr Y Zr Nb | Mo | Tc Ru Rh | Pd | Ag | Cd In Sn Sbh Te | Xe
5s1 552 | 55244! | 552402 | 551404 | 551445 | 552405 | 5s1ad” | 5s14d®| 4d10 |5s14019|5524019 5525p1 | 5525p2 | 5525p3 | 5525p% | 5525p5 | 552508
55 56 o7 w2 i) 74 75 76 77 78 79 80 81 82 83 84 85 86
Cs | Ba | La*| | Hf Ta w Re | Os Ir Pt Au Hg TI Pb Bi Po At Rn
65’ 652 |6s2541| |652502| 652503 | 65250 | 652505 | 652548 | 652507 | 651509 6515010 |6525019| 6526p! | 652602 | 6526p3 | 6526p* | 6526p5 | 652608
87 88 89 104 105 106 107 108 109 110 1 112 113 114 115 116 118
Fr | Ra |(Ac**| Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn

7s! 752 | 7s26d!| |7s2602| 752602 | 752604 | 752605 | 752608 | 752647 | 752608 | 7526409 (75260 10| 7527p1 | 75272 | 7527p8 | 75%7p* 7s27p6

Inner Transition Elements (f block)
58 59 60 61 62 63 64 65 66 67 68 69 70 71
“Lanthanides | Ce Pr Nd | Pm | Sm | Eu | Gd | Tb Dy | Ho Er | Tm | Yb Lu
ss24t'5d’ | 65243 | 652414 | 652415 | 652415 | 652417 |es2rsd | 6524f9 | 652410 | 6524111 652412 | 6524113 | 6524114 652411454
90 91 92 93 94 95 96 97 98 99 100 101 102 103
**Actinides | Th Pa U Np [ Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No Lr
7525d2 752612601 | 75251341 | 752514601 7525{5 7525f7 7s26fT6d! 7525f9 7525f10 7525,:11 7525[12 7525,«13 7525f14 752511441




Figure 8.11
1s -
2s 3 2p
3s > 3p
4s > 3d—> 4p
55 > 4d—> 5p

5 block

6s —» 4f — 5d—>» 6p
75 — = 5f— = 6d—» Tp

fblock

Orbital filling and the periodic table.

3A
(13)

4A
(14)

7A
(7)

B) | H16)[6)](7)][8) (9 (10)(11)](12)

d block

8A
(18)

p block

The order in which the orbitals are filled can be obtained directly
from the periodic table.




Aid to memorizing sublevel filling order.
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Categories of Electrons

Inner (core) electrons are those an atom has in common
with the pervious noble gas and any completed transition
series.

Outer electrons are those in the highest energy level
(highest n value).

Valence electrons are those involved in forming
compounds.

For main group elements, the valence electrons are the outer
electrons.

For transition elements, the valence electrons include the outer
electrons and any (n-1)d electrons.

8-29



Sample Problem 8.2 Determining Electron Configurations

PROBLEM: Using the periodic table on the inside cover of the text (not
Figure 8.10 or Table 8.3), give the full and condensed
electron configurations, partial orbital diagrams showing
valence electrons only, and number of inner electrons for the
following elements:

(a) potassium (b) technetium (c) lead
(K; Z=19) (Tc; Z=43) (Pb; Z = 82)

PLAN: The atomic number gives the number of electrons, and the
periodic table shows the order for filling orbitals. The partial
orbital diagram includes all electrons added after the previous
noble gas except those in filled inner sublevels.



Sample Problem 8.2

SOLUTION:
(a) ForK (Z=19)

full configuration 1522522p®3s23pb4st

condensed configuration [Ar] 4s

partial orbital diagram 1

4s 3d

There are 18 inner electrons.



Sample Problem 8.2

SOLUTION:
(b) ForTc (Z=43)

full configuration 1522522p%3523p®4523d194p®5524d°

condensed configuration [Kr]5s24d°

partial orbital diagram |4 [ [+ [+ [+ |1 |1

5s 4d 5p

There are 36 inner electrons.



Sample Problem 8.2

SOLUTION:
(a) For Pb (Z =82)

full configuration 1522522p%3523p®4523d194p®5524d195p%6524f145d106p2

condensed configuration  [Xe] 6s24f145d106p2

partial orbital diagram 1l (R

6s 6p

There are 78 inner electrons.



Figure 8.12  Defining atomic size.
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B. The covalent radius of chlorine.

C. Known covalent radii and distances
between nuclei can be used to find
unknown radii.



Trends in Atomic Size

Atomic size increases as the principal quantum number n

Increases.

As n increases, the probability that the outer electrons will be further
from the nucleus increases.

Atomic size decreases as the effective nuclear charge Z

Increases.
As Z_ increases, the outer electrons are pulled closer to the nucleus.

For main group elements:
atomic size increases down a group in the periodic table
and decreases across a period.



Figure 8.13

Atomic radii of the main-
group and transition
elements.
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Atomic radius (pm)

Figure 8.14 Periodicity of atomic radius.
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Sample Problem 8.3 Ranking Elements by Atomic Size

PROBLEM: Using only the periodic table (not Figure 8.15), rank each
set of main-group elements in order of decreasing atomic

size:
(a) Ca, Mg, Sr (b) K, Ga, Ca
(c) Br, Rb, Kr (d) Sr, Ca, Rb

PLAN: Locate each element on the periodic table. Main-group
elements increase in size down a group and decrease in size
across the period.



Sample Problem 8.3

SOLUTION:

(a) Sr > Ca > Mg
Ca, Mg, and Sr are in Group 2A. Size increases down the group.

(b) K >Ca>Ga
K, Ga, and Ca are all in Period 4. Size decreases across the period.

(c) Rb > Br > Kr

Rb is the largest because it has one more energy level than the other
elements. Kr is smaller than Br because Kr is further to the right in the
same period.

(d) Rb > Sr > Ca
Ca is the smallest because it has one fewer energy level. Sr is smaller
than Rb because it is smaller to the right in the same period.



Trends in lonization Energy

lonization energy (IE) is the energy required for the

complete removal of 1 mol of electrons from 1 mol of
gaseous atoms or ions.

Atoms with a low IE tend to form cations.

Atoms with a high IE tend to form anions (except the
noble gases).

lonization energy tends to decrease down a group and
Increase across a period.



First ionization energy (kJ/mol)

Figure 8.15  Periodicity of first ionization energy (IE,).
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Figure 8.16

First ionization energies of the main-group elements.
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Sample Problem 8.4 Ranking Elements by First lonization
Energy

PROBLEM: Using the periodic table only, rank the elements in each of
the following sets in order of decreasing IE;:

(a) Kr, He, Ar (b) Sb, Te, Sn
(c) K, Ca, Rb (d) I, Xe, Cs

PLAN: Find each element on the periodic table. IE; generally
decreases down a group and increases across a period.
SOLUTION:

(a) He > Ar > Kr
Kr, He, and Ar are in Group 8A. IE, decreases down the group.



Sample Problem 8.4

SOLUTION:

(b) Te > Sb > Sn
Sb, Te, and Sn are in Period 5. IE, increases across a period.

(c)Ca>K>Rb
K has a higher IE; than Rb because K is higher up in Group 1A. Ca
has a higher IE, than K because Ca is further to the right in Period 4.

(d) Xe>1>Cs

Xe has a higher IE, than | because Xe is further to the right in the
same period. Cs has a lower IE; than | because it is further to the left
In a higher period.



Figure 8.17 The first three ionization energies of beryllium.

|onization
eneTgY
(MJ/mol)

Beryllium has 2 valence electrons, so
|E; is much larger than IE,.



lon Energies of the Elements
odium

Number lonization Energy (MJ/mol)*
of Valence
Z Element Electrons IE, IE, IE; IE, IE; IEg IE, IEg IEy | =
3 Li 1 052 [|730 11.81
4 Be 2 090 1.76 CORE ELECTRONS
5 B 3 080 243 3.66 32.82
6 C 4 109 235 4.62 3783 47.28
7 N 5 140 2.86 4.58 64.36
8 0} 6 131 339 5.30 747 10.98 13.33 [Jis
9 F 7 1.68  3.37 6.05 8.41 11.02 15.16 17.87 106.43
10 Ne 8 208 395 6.12 937 12.18 1524  20.00 115.38 13143
11 Na 1 0.50 |4.56 691 954 1335 16.61  20.11 2549 28.93 141.37

*MJ/mol, or megajoules per mole = 103 kJ/mol.



Sample Problem 8.5 ldentifying an Element from Its lonization

Energies

PROBLEM: Name the Period 3 element with the following ionization
energies (in kJ/mol) and write its electron configuration:

IE, E, IE; IE, IEs IE
1012 1903 2910 4956 6278 22,230

PLAN: Look for a large increase in IE, which occurs after all valence
electrons have been removed.

SOLUTION:

The largest increase occurs after IEc, that is, after the 5th
valence electron has been removed. The Period 3 element
with 5 valence electrons is phosphorus (P; Z = 15).

The complete electron configuration is 1s22s22p%3s23p3,



Trends in Electron Affinity

Electron Affinity (EA) Is the energy change that occurs
when 1 mol of electrons is added to 1 mol of gaseous

atoms or ions.

Atoms with a low EA tend to form cations.
Atoms with a high EA tend to form anions.

The trends in electron affinity are not as regular as those
for atomic size or IE.



Figure 8.18

Electron affinities of the main-group elements
(in kJ/mol).

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.




Behavior Patterns for IE and EA

Reactive nonmetals have high IEs and highly negative

EAS.
These elements attract electrons strongly and tend to form negative
lons in ionic compounds.

Reactive metals have low IEs and slightly negative EAs.
These elements lose electrons easily and tend to form positive ions in
lonic compounds.

Noble gases have very high IEs and slightly positive EASs.
These elements tend to neither lose nor gain electtons.



Figure 8.19 Trends in three atomic properties.

* Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

b Inoreases = ~ Increases >

- Increases
5 (with many exceptions)
Q
S
S 3
o g ELECTRON AFFINITY
S E
—
< £



Metallic Behavior

Metals are typically shiny solids with moderate to high
melting points.

Metals are good conductors of heat and electricity, and
can easily be shaped.

Metals tend to lose electrons and form cations, i.e., they
are easily oxidized.

Metals are generally strong reducing agents.

Most metals form ionic oxides, which are basic in
agueous solution.



Figure 8.20

Trends in metallic behavior.




Figure 8.21 Metallic behavior in Group 5A(15) and Period 3.
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Figure 8.22

Highest and lowest O.N.s of reactive main-group

elements.
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Figure 8.23 Oxide acidity.
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CaO, the oxide of a main-group metal, is strongly basic.
P,O,,, the oxide of a main-group nonmetal, is acidic.



Acid-Base Behavior of Oxides

Main-group metals form ionic oxides, which are basic in
agueous solution.

Main-group nonmetals form covalent oxides, which are
acidic in agueous solution.

Some metals and metalloids from amphoteric oxides,
which can act as acids or bases in water:

Al,O4(s) + 6HCI(aq) — 2AICl;(aq) + 3H,0(l)
Al,O4(s) + 2NaOH(aq) — 2NaAIl(OH),(aq)



Figure 8.24

Acid-base behavior of some element oxides.
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Electron configurations of Monatomic lons

Elements at either end of a period gain or lose electrons
to attain a filled outer level. The resulting ion will have a
noble gas electron configuration and is said to be
Isoelectronic with that noble gas.

Na(1s%2s%2pf3s!) — e + Na*([He]2s%2p")
[isoelectronic with Ne]

Br([Ar]4s23d1%4p°) + e- — Br ([Ar]4s23d1°4pd)
[isoelectronic with Kr]



Figure 8.25

Main-group elements whose ions have noble gas
electron configurations.
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Electron configurations of Monatomic lons

A pseudo-noble gas configuration is attained when a

metal atom empties its highest energy level.
The ion attains the stability of empty ns and np sublevels and a filled

(n-1)d sublevel.
Sn([Kr]5s24d1%5p?) — 4e” + Sn** ([Kr]4d19)

A metal may lose only the np electrons to attain an inert

pair configuration.
The ion attains the stability of a filled ns and (n-1)d sublevels.

Sn([Kr]5s24d105p2) — 2e" + Sn?* ([Kr]5s24d10)



Sample Problem 8.6 Writing Electron Configurations of Main-Group

lons

PROBLEM: Using condensed electron configurations, write reactions for
the formation of the common ions of the following elements:

(a) lodine (Z=53) (b) Potassium (Z=19) (c) Indium (Z = 49)

PLAN: Identify the position of each element on the periodic table
and recall that:
 lons of elements in Groups 1A(1), 2A(2), 6A(16), and 7A(17)
are usually isoelectronic with the nearest noble gas.
* Metals in Groups 3A(13) to 5A(15) can lose the ns and np

electrons or just the np electrons.



Sample Problem 8.6

SOLUTION:

(a) lodine (Z =53) is in Group 7A(17) and will gain one electron to be
Isoelectronic with Xe: | ([Kr] 55%4d1%5p°) + e- — |- ([Kr] 5524d105p°)

(b) Potassium (Z = 19) is in Group 1A(1) and will lose one electron to be
iIsoelectronic with Ar: K ([Ar] 4s!) — K* ([Ar]) + e

(c) Indium (Z = 49) is in Group 3A(13) and can lose either one electron
or three electrons: In ([Kr] 5s24d'05pt) — In* ([Kr] 5524d'0) + e
In ([Kr] 5s24d1%5pt) —  In3*([Kr] 4d%0) + 3e-



Figure 8.26 The crossover of sublevel energies in Period 4.
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Magnetic Properties of Transition Metal ions

A species with one or more unpaired electrons exhibits
paramagnetism — it is attracted by a magnetic field.

Ag (£ =47) T LTl
5s 4d op

A species with all its electrons paired exhibits
diamagnetism — it is not attracted (and is slightly repelled)
by a magnetic field.

8-65



Figure 8.27 Measuring the magnetic behavior of a sample.
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Magnetic Properties of Transition Metal ions

Magnetic behavior can provide evidence for the
electron configuration of a given ion.

Tiz=22) |11 | (T |1
4s 3d 4p

Ti2+ T 11
4s 3d 4p

Ti** has 2 unpaired electrons and is paramagnetic,
providing evidence that the 4s electrons are lost
before the 3d electrons.



Sample Problem 8.7 Writing Electron Configurations and

Predicting Magnetic Behavior of Transition
Metal lons

PROBLEM: Use condensed electron configurations to write the reaction
for the formation of each transition metal ion, and predict
whether the ion is paramagnetic or diamagnetic.

(a) Mn=*(Z = 25) (b) Cr3+(Z = 24) (c) Hg2*(Z = 80)

PLAN: Write the condensed electron configuration for each atom,
recalling the irregularity for Cr. Remove electrons, beginning
with the ns electrons, and determine if there are any unpaired
electrons.



Sample Problem 8.7

SOLUTION:

(@) Mn?*(Z =25) Mn ([Ar] 4523d°) — Mn?* ([Ar] 3d°) + 2e~

Since there are 5 d electrons they are all unpaired. Mn?* is paramagnetic.

(b) Cr3*(Z =24) Cr ([Ar] 4513d°) — Cr3* ([Ar] 3d3) + 3e-

Since there are 3 d electrons they are all unpaired. Cr3* is paramagnetic.

(c) Hg?*(Z = 80) Hg ([Xe] 6s24f145d10) — Hg?* ([Xe] 4f145d10) + 2e-

The 4f and the 5s sublevels are filled, so there are no unpaired
electrons. Hg?* is diamagnetic.

8-69



lonic Size vs. Atomic Size

Cations are smaller than their parent atoms while
anions are larger.

lonic radius increases down a group as n increases.

Cation size decreases as charge increases.

An isoelectronic series is a series of ions that have
the same electron configuration. Within the series, ion
size decreases with increasing nuclear charge.

3->2->1->1+> 2+ > 3+




Figure 8.28

lonic radius.
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Figure 8.29 lonic vs. atomic radii.
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Sample Problem 8.8 Ranking lons by Size

PROBLEM: Rank each set of ions in order of decreasing size, and
explain your ranking:

(a) Ca?*, Sr*, Mg®*  (b) K*, S27,ClI-  (c) Au*, Au3?

PLAN: Find the position of each element on the periodic table and
apply the trends for ionic size.

SOLUTION:
(a) Sr2+ > Ca2+ > Mg2+

All these ions are from Group 2A, so size increases down the group.



Sample Problem 8.8

SOLUTION:

(b) S~ > CI-> K*

These ions are isoelectronic, so size decreases as nuclear
charge increases.

(c) Au*> Au3t

Cation size decreases as charge increases.
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