Gen. Chem.-1312; Quiz # 1; SP 2011

1) Nitrogen dioxide de	composes to nitric oxide and oxygen via the reaction:	1)
$2NO_2 \rightarrow 2N$	NO + O ₂	
In a particular exper	iment at 300°C, [NO ₂] drops from 0.0100 to 0.00650 M in 100 s. The rate of	
appearance of O_2 for	r this period is M/s.	
A) 7.0×10^{-3}		
B) 1.8×10^{-5}		
C) 3.5×10^{-5}		
D) 7.0×10^{-5}		
E) 3.5×10^{-3}		
2) Consider the followi	ng reaction:	2)
A → 2C		
and the rate of disap A) +2 B) +1 C) -1 D) +1/2 E) -1/2	appearance of C is given by $\Delta[C]/\Delta t$. Comparing the rate of appearance of C pearance of A, we get $\Delta[C]/\Delta t = \underline{\hspace{1cm}} \times (-\Delta[A]/\Delta t)$. of A and allowed to react to form B according to the reaction $A(g) \rightarrow B(g)$. The followeeds: $\underline{\frac{\text{Time (s)}}{\text{Moles of A}}} = \underbrace{\begin{array}{ccccccccccccccccccccccccccccccccccc$	owing data are
	lisappearance of A between 10 s and 20 s is mol/s.	3)
A) 9.90×10^{-3}		
B) 4.4×10^{-3}		
C) 1.1 × 10 ⁻³ D) 454		
E) 2.2 × 10−3		
,		
,	lisappearance of A between 20 s and 40 s is mol/s.	4)
A) 1.7×10^{-3}		
B) 8.5 × 10 ⁻⁴		
C) 590		
D) 1.4 × 10 ⁻³		
E) 7.1 × 10−3		

5) The average rate of appearance of B between 20 s and 30 s is mol/s.	5)
A) -1.5×10^{-3} B) -7.3×10^{-3}	
C) $+5.0 \times 10^{-4}$	
D) $+1.5 \times 10^{-3}$	
E) $+7.3 \times 10^{-3}$	
E) +7.3 x 10 ♥	
6) The average rate disappearance of A between 20 s and 30 s is mol/s. A) 670	6)
B) 0.15	
C) 5.0×10^{-4}	
D) 1.5×10^{-3}	
E) 1.6×10^{-2}	
7) How many moles of B are present at 10 s?	7)
A) 0.110	′′
B) 0.014	
C) 1.4×10^{-3}	
D) 0.220	
E) 0.011	
8) How many moles of B are present at 30 s?	8)
A) 2.4×10^{-3}	′
B) 0.051	
C) 1.7×10^{-3}	
D) 0.15	
E) 0.073	

The peroxydisulfate ion (S2O8²⁻) reacts with the iodide ion in aqueous solution via the reaction:

E) 5.8×10^{-5}

$$S_2O_8^{2-}$$
 (aq) + 3I⁻ \rightarrow 2SO₄ (aq) + I₃⁻ (aq)

An aqueous solution containing 0.050~M of $S_2O_8{}^{2-}$ ion and 0.072~M of I^- is prepared, and the progress of the reaction followed by measuring $[I^-]$. The data obtained is given in the table below.

Time (s)	0.000	400.0	800.0	1200.0	1600.0
$[I^-](M)$	0.072	0.057	0.046	0.037	0.029

9) The average rate of disappearance of I ⁻ between 400.0 s and 800.0 s is M/s.	9)
A) 2.8×10^{-5}	,
B) 1.4×10^{-5}	
C) 3.6×10^4	
D) 26 × 10-4	

10) The average rate of disappearance of I^- in the initial 400.0 s is M/s.	10)
A) 3.8×10^{-5}	, <u></u>
B) 1.4×10^{-4}	
C) 2.7×10^4	
D) 3.2×10^{-4}	
E) 6.00	
11) The average rate of disappearance of I ⁻ between 1200.0 s and 1600.0 s is M/s.	11)
A) 1.8 × 10 ⁻⁵	11)
B) 1.6×10^{-4}	
C) 5.0×10^4	
D) 1.2 × 10 ⁻⁵	
E) 2.0×10^{-5}	
E) 2.0 x 10 0	
12) The concentration of $S_2O_8^{2-}$ remaining at 400 s is M.	12)
A) +0.057	12)
B) +0.035	
C) +0.045	
D) +0.015	
E) -0.007	
13) The concentration of $S_2O_8^2$ remaining at 800 s is M.	13)
A) 0.015	13)
B) 0.046	
C) 0.041	
D) 0.076	
E) 4.00×10^{-3}	
14) The concentration of $S_2O_8^{2-}$ remaining at 1600 s is M.	14)
A) 0.043	
B) 0.036	
C) 0.029 D) 0.014	
E) 0.064	
2) 5:551	
15) At elevated temperatures, methylisonitrile (CH3NC) isomerizes to acetonitrile (CH3CN):	15)
$CH_3NC(g) \rightarrow CH_3CN(g)$	
At the start of an experiment, there are 0.200 mol of reactant and 0 mol of product in the reaction	
vessel. After 25 min, 0.108 mol of reactant (CH3NC) remain. There are mol of product	
(CH ₃ CN) in the reaction vessel.	
A) 0.308	
B) 0.022	
C) 0.092	
D) 0.540	
E) 0.200	

16) A reaction was found to be second order in carbon monoxide concentration. The rate of the reaction	16)
if the [CO] is doubled, with everything else kept the same.	
A) increases by a factor of 4	
B) remains unchanged	
C) is reduced by a factor of 2	
D) doubles	
E) triples	
17) If the rate law for the reaction	17)
2A + 3B → products	
is first order in A and second order in B, then the rate law is rate =	
A) $k[A][B]^2$	
B) k[A] ² [B] ²	
C) k[A] ² [B] ³	
D) k[A][B]	
E) $k[A]^2[B]$	
18) The overall order of a reaction is 2. The units of the rate constant for the reaction are	18)
A) $M^{-1}s^{-1}$	· —
B) 1/M	
C) s/M^2	
D) M/s	
E) 1/s	
19) The kinetics of the reaction below were studied and it was determined that the reaction rate increased by a factor of 9 when the concentration of B was tripled. The reaction is order in B.	19)
$A + B \rightarrow P$	
A) zero	
B) first	
C) second	
D) third	
E) one-half	
20) A reaction was found to be zero order in A. Increasing the concentration of A by a factor of 3 will	20)
cause the reaction rate to	
A) remain constant	
B) increase by a factor of 27	
C) triple	
D) decrease by a factor of the cube root of 3	
E) increase by a factor of 9	

The data in the table below were obtained for the reaction:

$$A + B \rightarrow P$$

Experiment Number	[A] (M)	[B] (M)	Initial Rate (M/s)
1	0.273	0.763	2.83
2	0.273	1.526	2.83
3	0.819	0.763	25.47

21)	The order	of the reacti	on in A i	S

- A) 1
- B) 2
- C) 3
- D) 4
- E) 0

- A) 1
- B) 2
- C) 3
- D) 4
- E) 0

- A) 1
- B) 2
- C) 3
- D) 4
- E) 0

A)
$$\frac{1}{[A]_t}$$
, t

- B) t, $\frac{1}{[A]_t}$
- C) ln [A]_t, t
- D) $[A]_t$, t
- E) $\ln [A]_{t}$, $\frac{1}{t}$

21)		

22)		
22)		

23)	
-----	--

$$NH_4^+$$
 (aq) + $NO_2^- \rightarrow N_2$ (g) + $2H_2O$ (l)

The data below is obtained at 25°C.

[NH ₄ +] (M)	[NO ₂ -] (M)	Initial rate (M/s)
0.0100	0.200	3.2×10^{-3}
0.0200	0.200	6.4×10^{-3}

The order of the reaction in NH_4 + is _____.

- A) -1
- B) -2
- C) +2
- D) +1
- E) 0

26) The rate constant for a particular second-order reaction is 0.47 M⁻¹s⁻¹. If the initial concentration of reactant is 0.25 mol/L, it takes _____s for the concentration to decrease to 0.13 mol/L.

26)

- A) 1.4
- B) 7.9
- C) 0.13
- D) 1.7
- E) 3.7

27) The initial concentration of reactant in a first-order reaction is 0.27 M. The rate constant for the 27) reaction is 0.75 s^{-1} . What is the concentration (mol/L) of reactant after 1.5 s?

- A) 3.8
- B) 8.8×10^{-2}
- C) 1.7
- D) 0.135
- E) 2.0×10^{-2}

28) Which one of the following is not a valid expression for the rate of the reaction below?

28) ____

$$4\mathrm{NH_3} + 7\mathrm{O_2} \rightarrow 4\mathrm{NO_2} + 6\mathrm{H_2O}$$

A)
$$-\frac{1}{7} \frac{\Delta[O_2]}{\Delta t}$$

B)
$$-\frac{1}{4} \frac{\Delta [NH_3]}{\Delta t}$$

C)
$$\frac{1}{4} \frac{\Delta[NO_2]}{\Delta t}$$

D)
$$\frac{1}{6} \frac{\Delta [H_2O]}{\Delta t}$$

E) All of the above are valid expressions of the reaction rate.

29) The rate law of a reaction is rate = k[D][X]. The units of the rate constant are _____.

29) _____

- A) $mol^2 L^{-2}s^{-1}$
- B) mol $L^{-1}s_{-2}$
- C) $L^2 \text{ mol}^{-2} \text{s}^{-1}$
- D) mol $L^{-1}s^{-1}$
- E) L mol $^{-1}$ s $^{-1}$

The data in the table below were obtained for the reaction:

 $A + B \rightarrow P$

Experiment			Initial Rate
Number	[A] (M)	[B] (M)	(M/s)
1	0.273	0.763	2.83
2	0.273	1.526	2.83
3	0.819	0.763	25.47

30) The rate law for this reaction is rate = _____.

30) _____

- A) $k[A]^2$
- B) k[A][B]
- C) $k[A]^2[B]$
- D) $k[A]^2[B]^2$
- E) k[P]

31) The magnitude of the rate constant is ______.

31) _____

- A) 0.278
- B) 38.0
- C) 13.2
- D) 42.0
- E) 2.21

The data in the table below were obtained for the reaction:

 $2 \text{ ClO}_2 \text{ (aq)} + 2 \text{ OH}^- \text{ (aq)} \rightarrow \text{ ClO}_3^- \text{ (aq)} + \text{ ClO}_2^- \text{ (aq)} + \text{ H}_2\text{O} \text{ (1)}$

Experiment			Initial Rate
Number	[ClO ₂] (M)	[OH-] (M)	(M/s)
1	0.060	0.030	0.0248
2	0.020	0.030	0.00276
3	0.020	0.090	0.00828

32) What is the order of the reaction with respect to ClO₂?

32)

- A) 4
- B) 0
- C) 2
- D) 3
- E) 1

33) What is the order of the reaction with respect to OH-?	33)
A) 0	
B) 1	
C) 2 D) 3	
E) 4	
L) I	
34) What is the overall order of the reaction?	34)
A) 3	,
B) 4	
C) 2	
D) 1	
E) 0	
35) What is the magnitude of the rate constant for the reaction?	35)
A) 230	
B) 4.6	
C) 1.15×10^4	
D) 713	
E) 115	
36) The rate law for a reaction is	26)
	36)
$rate = k [A][B]^2$	
Which one of the following statements is false?	
A) k is the reaction rate constant	
B) The reaction is first order in A.	
C) The reaction is second order in B.	
D) The reaction is second order overall.	
E) If [B] is doubled, the reaction rate will increase by a factor of 4.	
37) The reaction	37)
$2NOBr(g) \rightarrow 2NO(g) + Br_2(g)$	
is a second-order reaction with a rate constant of 0.80 M ⁻¹ s ⁻¹ at 11°C. If the initial concentration of	
NOBr is 0.0440 M, the concentration of NOBr after 10.0 seconds is	
A) 0.0300 M B) 0.0350 M	
C) 0.0400 M	
D) 0.0325 M	
E) 0.0275 M	
,	

38) The following reaction is second order in [A] and the rate constant is $0.039 \text{ M}^{-1}\text{s}^{-1}$:

38)

$$A \rightarrow B$$

The concentration of A was 0.30 M at 23 s. The initial concentration of A was _____ M.

- A) 1.2×10^{-2}
- B) 2.4
- C) 3.7
- D) 0.27
- E) 0.41

The reaction $A \rightarrow B$ is first order in [A]. Consider the following data.

time (s)	[A] (M)
0.0	1.60
10.0	0.40
20.0	0.10

39) The rate constant for this reaction is ______s⁻¹.

39) _____

- A) 3.1×10^{-3}
- B) 0.013
- C) 0.14
- D) 0.030
- E) 3.0

40) As the temperature of a reaction is increased, the rate of the reaction increases because the

40)

- A) activation energy is lowered
- B) reactant molecules collide less frequently
- C) reactant molecules collide less frequently and with greater energy per collision
- D) reactant molecules collide more frequently with less energy per collision
- E) reactant molecules collide more frequently and with greater energy per collision

41) Which energy difference in the energy profile below corresponds to the activation energy for the forward reaction?

41) _____

- A) x
- B) y
- C) y x
- D) x y
- E) x + y

421	The	mechanism	for	formation	٦f	tha	nraduat	v	;,
44.) ine	mechanism	ror	rormation	or	tne	product	А	15

 $A + B \rightarrow C + D$ (slow) $B + D \rightarrow X$ (fast)

The intermediate reactant in the reaction is _____.

- A) A
- B) B
- C) C
- D) D
- E) X

43) For the elementary reaction

 $NO_3 + CO \rightarrow NO_2 + CO_2$

the molecularity of the reaction is ______, and the rate law is rate = _____.

42)

43) ____

44) _____

- A) 2, k[NO₃][CO]
- B) 2, k[NO₃][CO]/[NO₂][CO₂]
- C) 4, k[NO₃][CO][NO₂][CO₂]
- D) 2, k[NO₂][CO₂]
- E) 4, k[NO₂][CO₂]/[NO₃][CO]

44) A possible mechanism for the overall reaction

 $Br_2(g) + 2NO(g) \rightarrow 2NOBr(g)$

is

NO (g) + Br₂ (g)
$$\stackrel{k_1}{\rightleftharpoons}$$
 NOBr₂ (g) (fast)

$$NOBr_2(g) + NO(g) \xrightarrow{k_2} 2NOBr$$
 (slow)

The rate law for formation of NOBr based on this mechanism is rate = _____.

- A) $(k_2k_1/k^{-1})[NO][Br_2]^2$
- B) $k_1[Br_2]^{1/2}$
- C) k₁[NO]^{1/2}
- D) $(k_1/k^{-1})^2[NO]^2$
- E) $(k_2k_1/k^{-1})[NO]^2[Br_2]$

45) The rate	law	of the	overall	reaction
--------------	-----	--------	---------	----------

45) _____

 $A + B \rightarrow C$

is rate = $k[A]^2$. Which of the following will <u>not</u> increase the rate of the reaction?

- A) increasing the concentration of reactant B
- B) increasing the temperature of the reaction
- C) adding a catalyst for the reaction
- D) increasing the concentration of reactant A
- E) All of these will increase the rate.
- 46) A catalyst can increase the rate of a reaction _____

46) _____

- A) by lowering the activation energy of the reverse reaction
- B) by changing the value of the frequency factor (A)
- C) by providing an alternative pathway with a lower activation energy
- D) by increasing the overall activation energy (E_a) of the reaction
- E) All of these are ways that a catalyst might act to increase the rate of reaction.