Simple Harmonic Motion

The position of a point oscillating about an equilibrium position at time t is modeled by either

$$s(t) = a \cos \omega t \quad \text{or} \quad s(t) = a \sin \omega t,$$

where a and ω are constants, with $\omega > 0$. The amplitude of the motion is $|a|$, the period is $\frac{2\pi}{\omega}$, and the frequency is $\frac{\omega}{2\pi}$.

Rectangular and Polar Coordinates

If a point has rectangular coordinates (x, y) and polar coordinates (r, θ), then these coordinates are related as follows:

$$x = r \cos \theta \quad y = r \sin \theta$$
$$r^2 = x^2 + y^2 \quad \tan \theta = \frac{y}{x}, \quad \text{if } x \neq 0$$

Applications of Parametric Equations

Parametric equations are used to simulate motion. If a ball is thrown with a velocity of v feet per second at an angle θ with the horizontal, its flight can be modeled by the parametric equations

$$x = (v \cos \theta) t \quad \text{and} \quad y = (v \sin \theta) t - 16t^2 + h,$$

where t is in seconds and h is the ball's initial height in feet above the ground. The term $-16t^2$ occurs because gravity is pulling downward. See Figure 38. These equations ignore air resistance.

Looking Ahead to Calculus

At any time t, the velocity of an object is given by the vector $\mathbf{v} = (f'(t), g'(t))$. The object's speed at time t is

$$|\mathbf{v}| = \sqrt{(f'(t))^2 + (g'(t))^2}.$$