Simple Harmonic Motion

The position of a point oscillating about an equilibrium position at time t is modeled by either

$$s(t) = a \cos \omega t$$
 or $s(t) = a \sin \omega t$,

where a and ω are constants, with $\omega > 0$. The amplitude of the motion is |a|, the period is $\frac{2\pi}{\omega}$, and the frequency is $\frac{\omega}{2\pi}$.

Rectangular and Polar Coordinates

If a point has rectangular coordinates (x, y) and polar coordinates (r, θ) , then these coordinates are related as follows.

$$x = r\cos\theta \qquad \qquad y = r\sin\theta$$

$$r^2 = x^2 + y^2$$
 $\tan \theta = \frac{y}{x}$, if $x \neq 0$

Looking Ahead to Calculus

At any time t, the velocity of an object is given by the vector $\mathbf{v} = \langle f'(t), g'(t) \rangle$. The object's speed at time t is

$$|\mathbf{v}| = \sqrt{(f'(t))^2 + (g'(t))^2}.$$

Applications of Parametric Equations Parametric equations are used to simulate motion. If a ball is thrown with a velocity of ν feet per second at an angle θ with the horizontal, its flight can be modeled by the parametric equations

$$x = (v \cos \theta)t$$
 and $y = (v \sin \theta)t - 16t^2 + h$,

where t is in seconds and h is the ball's initial height in feet above the ground. The term $-16t^2$ occurs because gravity is pulling downward. See Figure 38. These equations ignore air resistance.

Figure 38