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Topic I.  Approximate Numbers, Part II.  Propagation of Errors 

when Computing with Rounded Numbers
Objectives:

1. For rounded numbers as input values to a formula, find the range of output values that are consistent with that.  Report these intervals in several different correct ways.

2. When we have a “target error” for the largest possible output value of a formula, determine the size of the largest possible error for the input value.  

3. Use a spreadsheet to graph a formula, consider the rounding error in the input values, and show on the graph the possible error in the input and the resulting possible error in the output.

In many situations where quantities are measured, the “fuzziness” in the result is conveyed by appropriately rounding the numerical measurement.  In these cases, the rounding precision approximately indicates the precision of measurement.   (A more accurate way of conveying the fuzziness of measured numbers is considered later in this course.  See the Topics on noise and on standard deviation.) 

When we compute values from rounded numbers, the imprecision in these numbers causes the result of the computation to also be imprecise.  The amount of imprecision also depends on which operations are used in the computation.  In most cases we can find the imprecision of the computed values just by considering what the result would be for the smallest and largest possible values that the rounded numbers could come from. 

Consider these examples.

Example 1:  We have two similar triangles.  Here the second triangle has sides that are 1/3 as long as those of the first triangle.  (The 1/3 is called a scaling factor.)  The lengths of the sides of the first triangle are measured in inches, with rounding precision 0.1.  For the side of the smaller triangle, labeled a’, what is the computed length, and how accurate is that computed value?


Solution:  Using just the rounded value, we have 
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.  Then we consider that the actual value of side a is  
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.  To find the length of side a’, multiply the length of side a by 1/3.  Do you see how to get the three values in the last column here?
	
	a
	a’         

	minimum
	4.55 in.
	1.516667 in.

	middle
	4.6 in
	1.5333333 in.

	maximum
	4.65 in.
	1.550000 in. 

	
	
	

	Summary 1
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	Summary 2
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	Summary 3
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How do we report these computed values?   Several of them have infinite decimal expansions, so we must decide how many places to write.   We could just write as many spaces as we have room or as we feel energetic enough to write.   That’s basically what I did in the table above.

But, when we consider the reader and what we want to communicate, we should consider this more carefully.   

If you had computed this in a previous math class, you would have said that the side a’ had length 
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 and then probably you would have written it as 1.53.  Writing the answer as 1.5 seems too imprecise (because clearly 3 times 1.5 is not equal to 4.6)   but 1.533333333 seems excessive.  So you need to quit writing the extra 3’s at some point.  Putting one extra 3 in seems like a good compromise.

Which of these summaries for the a’ column would you rather see?  Does the information from the extra digits seem useful to you?    (This might depend on what question was being investigated by these measurements and computations, such as whether this is part of a real estate deal or whether it has to do with how much really expensive tile needs to be purchased to cover the area, or something like that.  Obviously we weren’t given that kind of context.)

	
	a’         
	a’         
	a’         

	minimum
	1.516667 in.
	1.516667 in.
	1.516667 in.

	middle
	1.533333 in.
	1.533333 in.
	1.533333 in.

	maximum
	1.550000 in.
	1.550000 in.
	1.550000 in.

	
	
	
	

	Summary 1
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	Summary 2
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	Summary 3
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Example 2.  The following diagram gives distances from point A to point B and then from point B to point C.  Each of the distances has rounding precision of one-tenth of a foot.  We want to compute the total distance from point A to point C, going through point B and give a summary of all the actual values it could be.


Solution:  Find the distance using the rounded values for the center.  Then write the interval of actual values for each of the distances.  The following table is useful for organizing the required sums. 
		64.45 mi
	65.5 mi
	64.55 mi

	75.75 mi
	140.2

		140.3


	75.8 mi
		140.3 
	
	75.85 mi
	140.3

		140.4



	
	Summary 1: 
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Summary 2: 
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Summary 3:  
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Example 3.  A motorist (in Oklahoma on a very straight road) drives from point A to point B, which is measured as 75.8 miles, rounded to the nearest tenth of a mile.  Then he drives back along the same road to point C, which is measured at 64.5 miles, rounded to the nearest tenth of a mile.  How far is he now from point A?  Give the usual computed value and then a summary of all the actual values it could be.


Solution:  Find the distance using the rounded values for the center.  Then write the interval of actual values for each of the distances.  Use this table to summarize the differences.

		64.45 mi

	64.5 mi
	64.55 mi


	75.75 mi

	11.3

		11.2


	75.8 mi
		11.3 
	
	75.85 mi

	11.4

		11.3



	
	Summary 1: 
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Summary 2:  
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Summary 3:  
[image: image21.wmf]0.1

11.3

0.1

-

+

 mi.


Important Note:  As we saw in this last example, it is not always true that we can find the smallest computed value by combining the two smallest input values.  Sometimes the operation works differently from that.  In this case, we see that subtraction works differently from addition.  The simplest rule to follow is to compute all four possibilities and then compare all four.  (We can discuss rules that are faster to apply, but more complex to understand.  Just ask if you wish to discuss that.)
Example 4.  How accurate does a map with a 1:6000 scale have to be if the real-world error in using it is going to be no more than 10 feet?

Solution:  
A length of 1 inch on the map corresponds to a length of 6000 inches in the real world.  

We want the 6000 inches to be accurate to within 10 feet, which is 120 inches, so that means 
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inches.

In order to find the length on the map, we divide by 6000, so that’s 
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Let’s try another.   A distance of 8503 feet in real life needs to be accurate to within 
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 feet.  The 8503 feet is 
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 inches.  So we take 
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 inches and divide by 6000 to find the length on the map. 
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Notice that, for the error, the critical part of the computation is 
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 in.  Therefore this describes the accuracy needed in the map.  It’s hard to think about 0.02 inches, because that’s just a small fraction of an inch.  So let’s think of this in millimeters.
Since there are 
[image: image29.wmf]25.4

 millimeters in an inch, then  
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 millimeters.  Despite the fact that we may be less familiar with millimeters, the concept of an error of about half a millimeter is usually easier to comprehend than an error of 0.02 inches.

Comment about scales on maps:  

Sometimes a map scale may be described as  1 inch = 500 feet.  That is an excellent way to describe it if the purpose is to help people look at the map and estimate distances in the real world.  But for actual computation, you need to change it to the scale factor, which requires the two parts to have the same units.

Since, when the map scale is given as 1 inch = 500 feet, it will always have a 1 on the left for the map units, usually it is easiest to just change the measurement on the right (real-world) to the same units as the map units to get the scale factor.   So here, we changed 500 feet to 
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inches.

Example 5.  How accurately does one need to know the weight of each item to dependably determine the total weight of a dozen items to within 1 pound?

Solution:  Let  
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 be the interval which dependably includes the weight of the first item.  Here 
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 is the measured weight of the first item and 
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 is the typical error in measuring the weight of the first item.  If we use the same pattern for naming the weights of the other items, then we have 
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.  So here, it is very likely that some of the errors might cancel each other out.  But if they don’t, the largest possible error is 

Total possible error 
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 If we assume the largest possible errors of all the objects are the same, and that the Total possible error should be 1 pound or less, then each individual item error must be 
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 pound or less.

Example 6.  Consider the formula for the volume of a sphere:  
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.  We will consider the largest possible error in the volume which results from a rounding error of 
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 feet in the radius.  Using a spreadsheet, find the values of the volume for values of the radius 
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 ft, using increments of 0.5.  Graph this.  From either the numerical values or the graph, determine whether an error of 
[image: image41.wmf]0.5
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 ft. in the radius at about 7 ft and an error of 
[image: image42.wmf]0.5

±

ft. in the radius at about 10 ft. give the same or different errors in the volume of the sphere.

Solution:

	radius

	volume


	6.5

	1150.346


	7

	1436.754


	7.5

	1767.144


	8

	2144.659


	8.5

	2572.439


	9

	3053.625


	9.5

	3591.361


	10

	4188.787


	10.5

	4849.044


	11

	5575.275



	The formula in cell B2 is 

 = (4/3)*3.14159 * A2 ^ 3
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Notice that the interval of possible volumes around 7, with an error of 
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in the radius, is 1150.346 to 1767.1444.  That’s a difference of about 600 cubic feet.

Notice that the interval of possible volumes around 10, with an error of 
[image: image45.wmf]0.5
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in the radius, is 4188.787 to 5575.275  That’s a difference of about 1400 cubic feet.

Clearly there is a larger possible error in the volume for the larger radius.  

It’s a bit harder to see this difference on the graph, although it is pretty clear from the graph that the Volume values are further apart near 
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Exercises:

In this course, when you are asked to compute something based on rounded or measured values, in many cases you will also need to give a summary of the actual values that would be consistent with the given information.  Thus, you will be expected to be able to use these techniques throughout the course.   It will be called the “error propagation” method.  
Part I.

1. For the triangle in Example 1, find the length of side a’ and then find the interval of actual values consistent with the given information.

2. For the distances in Example 2, find the distance from point A to point C.  Also find a summary of actual values consistent with the given information.

3. For the distances in Example 3, find the distance from point A to point C.  Also find a summary of actual values consistent with the given information.

4. How accurate does a map with a 1:6000 scale have to be if the real-world error in using it is going to be no more than 10 feet?  Give the answer in both inches and in millimeters.
5. How accurately does one need to know the weight of each item to dependably determine the total weight of a dozen items to within 1 pound?
6. Consider the formula for the volume of a sphere:  
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.  We will consider the largest possible error in the volume which results from a rounding error of 
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±

 feet in the radius.  Using a spreadsheet, find the values of the volume for values of the radius 
[image: image50.wmf]6.510.5
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 ft, using increments of 0.5.  Graph this.  From either the numerical values or the graph, determine whether an error of 
[image: image51.wmf]0.5
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 ft. in the radius at about 7 ft and an error of 
[image: image52.wmf]0.5

±

ft. in the radius at about 10 ft. give the same or different errors in the volume of the sphere.
Part II.

7. Consider the triangle with sides 1.31 ft, 1.63 ft, and 2.02 ft, each rounded to the nearest hundredth of a foot.  Compute the length of the longest side of a similar triangle for which the scaling factor is 500.  Give summaries of the actual values that would be consistent with the original information.  
8. Consider the triangle with sides 8.2 mi, 9.7 mi, and 10.2 mi, each rounded to the nearest tenth of a mile.  Compute the length of the shortest side of a similar triangle for which the scaling factor is  
[image: image53.wmf]1

600

. Give summaries of the actual values that would be consistent with the original information.  (To determine how many decimal places to put in the summaries, make a judgment about what would be the most useful in communication.  There is no right or wrong answer to this, but be able to discuss and justify your choices with your classmates.)

9. Add two lengths: 63.2 inches, rounded to the nearest tenth of an inch, and 97.2 inches, rounded to the nearest tenth of an inch.   Give summaries of the actual values that would be consistent with the original information.  


10. Add two lengths: 1700 miles, rounded to the nearest hundred miles, and 3200 miles, rounded to the nearest hundred miles.   Give summaries of the actual values that would be consistent with the original information.

11. Subtract 1700 miles, rounded to the nearest hundred miles, from 3200 miles, rounded to the nearest hundred miles.   Give summaries of the actual values that would be consistent with the original information. 
12. Subtract 63.2 inches, rounded to the nearest tenth of an inch, from 97.2 inches, rounded to the nearest tenth of an inch.   Give summaries of the actual values that would be consistent with the original information.

13. How accurate does a map with a 1:4000 scale have to be if the real-world error in using it is going to be no more than 20 feet?  Give the answer in inches.  
14. How accurate does a map with a 1:9000 scale have to be if the real-world error in using it is going to be no more than 5 meters?  Give the answer in centimeters.
15. How accurately does one need to know the weight of each item to dependably determine the total weight of eight items to within 4 ounces? 
16. How accurately does one need to know the weight of each item to dependably determine the total weight of twelve items to within 3 ounces?
17. Consider the formula for the volume of a cylinder:  
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.  Suppose that we know the height to be exactly 6 feet.  We will consider the largest possible error in the volume which results from a rounding error of 
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 feet in the radius.  Using a spreadsheet, find the values of the volume for values of the radius 
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 ft, using increments of 0.5.  Graph this.  From either the numerical values or the graph, determine whether an error of 
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 ft. in the radius at about 2 ft and an error of 
[image: image58.wmf]0.2
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ft. in the radius at about 5 ft. give the same or different errors in the volume of the cylinder.  
B





A





c’











a





C





b





a’





B’





C’





b’





A’





11.0





4.6





9.3





c





1/3





64.5 mi





A





75.8 mi





B





C





C





B





75.8 mi





A





64.5 mi














_1166710001.unknown

_1188038640.unknown

_1219492421.unknown

_1219492423.unknown

_1219492424.unknown

_1219492422.unknown

_1198139761.unknown

_1219491793.unknown

_1219492419.unknown

_1219492420.unknown

_1219491877.unknown

_1198139805.unknown

_1219491623.unknown

_1198139789.unknown

_1198139686.unknown

_1198139748.unknown

_1198139644.unknown

_1198139672.unknown

_1188039479.unknown

_1166712747.unknown

_1166714389.unknown

_1166719609.unknown

_1166721369.unknown

_1166721470.unknown

_1166720239.unknown

_1166720292.unknown

_1166719864.unknown

_1166719506.unknown

_1166714290.unknown

_1166714350.unknown

_1166713376.unknown

_1166710198.unknown

_1166712739.unknown

_1166710044.unknown

_1157362054.unknown

_1157362418.unknown

_1166709812.unknown

_1166709883.unknown

_1157362741.unknown

_1157362405.unknown

_1157356053.unknown

_1157356223.unknown

_1157356224.unknown

_1157358613.unknown

_1157356151.unknown

_1157355738.unknown

_1157356043.unknown

_1157356044.unknown

_1157355118.unknown

