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Topic N:  Approximate Numbers, Part III.

Communicating the Results of Computations with Rounded Numbers
When we compute with measured numbers, since the input values are approximate, that is, a bit “fuzzy” then we know that our output values should not be considered to be perfectly precise.  How can we report the output values in a way that correctly reflects their precision?    (Sometimes people think of that as: How can we report the output values in a way that does not mislead the reader about the precision?)  This is a more complicated question than you might first think.  There are several different methods.  As you go through the material in this topic, consider these questions.
1. What are the methods we can use to communicate the result of computations with measured numbers? (We’ll consider three methods)  
2. How do we carry them out?   
3. Which methods give better answers than others and why? 
4. Which methods are easier to use than others and why? 
5. What is the difference between exact and approximate numbers and how does that affect our computations? 
6. When reading a problem, how do we decide which numbers are exact and which are approximate?   (What are “design numbers” and why is that a useful concept?) 
7. For the approximate numbers, how do we decide just how accurate they are?  (Another way of saying it – how do we decide how “fuzzy” the approximate numbers are?)  

8. How can you tell which of the methods you’re expected to use when you work a problem in this course?

9. Is it OK to round numbers in the middle of a computation?  
Section 1.  Overview of the methods.

In this Topic, we’ll consider three methods.   

1. Error Propagation of Rounded Numbers.  The best method for rounded measured numbers is to actually look at how large and how small the computed value could be, based on how large and how small all the input values can be.   That was discussed in Topic I, Error Propagation.   

2. Arbitrary method.  (Overly simple.) This easiest method is to completely ignore the whole idea of communicating precision accurately and round the answer to three decimal places.  (I chose three decimal places rather arbitrarily.  It’s tedious to write more decimal places than that.)  

3. Method of Significant Digits.  A compromise method is that called the “method of significant digits.”  In summary, this method is to report the answer to the same precision as the least precise measured number that was used in the computation.   

The method of error propagation gives answers that best convey the precision of the computed result and it also requires the most work to carry out.  The overly simple method gives answers that don’t even attempt to convey the precision of the computed result, but it is very easy to do.  The method of significant digits gives answers that convey a somewhat reasonable precision and it is reasonably easy to do.
In the early part of this course, we considered the variability in measurement only as conveyed by the rounding precision of the reported values.   When we get to modeling data, we introduce the idea of “noise” and describe the noise by the standard deviation.  This is a more sophisticated analysis of measurement errors, which takes into account that the actual value is not equally likely to occur at all values in the interval around the number, and also that the interval around the number may be some other value than the 0.5 or 0.005, etc. on either side of the final answer.   In later topics in this course, we’ll consider how to adapt the method of error propagation to “noise” in measurements.   
Section 2.  Exact numbers versus approximate numbers:

When we compute with approximate/measured numbers, we often use formulas which have some exact numbers as well as measured values as input.  When we are thinking of measurement errors and significant digits, those only apply to approximate/measured numbers.  Exact numbers should always be used just as they are. 
Example 1:  Perimeter P of a rectangle, given the length l and the width w.  
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Answer: The numbers 2 are both exact here, because those mean to double the length and width, and to vary the 2 to be 2.05 or so wouldn’t make sense at all.   

Generally speaking, if a number in a formula is given as a number rather than a variable, it is an exact number.  

Example 2:  Volume V of a sphere, given the radius r.  
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Answer: There are four numbers in this formula.  All of the numbers except the radius are exact.  Notice that, for different spheres, we have different radii, but the other numbers in this formula are the same for all spheres.  That’s what tells us they are exact.  Usually the radius is an approximate/measured number.

Design numbers are numbers which, in some contexts might be measured numbers, but in this context are assumed to be exact.  Often this is because the problem is designed around them.

Example 3:  The speed limit on a certain freeway is 65 mph.  If we want to compute the distance traveled, d, in t hours when driving at the speed limit, we use the formula 
[image: image3.wmf]65

dt

=

.

Answer:  In this formula, t is an approximate/measured number and 65 is a design number.  Obviously, the speed of a car could easily be a measured number in some contexts, but in this context, since the problem was designed to say that the vehicle traveled at the speed limit, the 65 is an exact number, which is exact because the problem was designed around it.

Measured numbers which you are able to measure very accurately compared to other numbers may be treated as exact numbers in a problem. 
Surveyors often set up right triangles in order to solve for distances that would be inconvenient to measure directly.  Sometimes they can measure one of the other distances in the problem very accurately.  It is not nearly as convenient to measure an angle as accurately.   In this case, it is the precision of the angle that determines the precision of the computed distance.  

Example 4.  A surveyor needs to determine the distance across a river.  It is inconvenient to measure that distance exactly compared to measuring distance on land.  Thus the surveyor may lay out a right triangle with one leg along the bank of the river, on land, and the other leg across the river to a specific point on the other side.  He can then measure the non-right angle at the other end of the leg of the triangle along the bank and use the tangent ratio to solve for the distance across the river.   
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    In this case, the surveyor would measure the distance along the bank very accurately and measure the angle as accurately as his instruments will let him.  The precision of the angle measurement will be the main influence on the precision of the distance across the river, since he will have measured the distance along the bank so accurately that the error in it is negligible.  In textbook problems, if one of the lengths is a very convenient number like 500 feet or 2000 feet, we might suspect that is a number that can be measured so accurately compared to the other measurements in the problem that we are able to pretend it is a design/exact number.
Section  3.  Computing with only exact numbers.
In most mathematics courses you have had, we compute as if all numbers were exact and then, if needed, we round off in some convenient way at the end of the problem.  Here are two definitions of “convenient.”
1. Your teacher may tell you a certain number of decimal places to use so that she can see enough of the results of your work to be sure you were doing the computation correctly at all stages.  

2. In a real problem, someone will decide how many decimal places are conveying meaningful information and ask you to round off to that many places.
In this course, when you are computing as if the numbers are exact (that is, when we are not thinking about measurement issues) show your computed result correct to about six decimal places and then round your final answer to three decimal places unless you are told otherwise in that particular problem.  

Section 4.  When should we round the result of a computation?

If we round the result of a computation and then do further computations with that rounded number, we are introducing extra errors into the final computed values that are unnecessary.   It is good practice to not round anything until the end of all computations in the problem.  Then round as appropriate.   In this class, where students have varying degrees of skill with algebra, it may be necessary for some students to round in the middle of computations so that they can easily do the computations in stages.  If you need to do that in this course, it will be acceptable. 
Example 5. In a right triangle, angle A is exactly 42.41º and side a is exactly 38.22 meters.  Find the length of side b.
	In the computation on the this side, we use algebra to isolate the variable before any computations are done and then do all the computations in the calculator together without writing any intermediate steps.  This keeps the most precision.  
	On the this side, we use our calculator to find the tangent of the angle first and wrote that result.  Many students find this easier.  If you need to do this, that is fine for this course, even though it sacrifices some precision.  Notice that the final result differs from the correct answer in the third decimal place.
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Notice that the answer on the right using a rounded number in the computation differs by about 0.002 (two thousandths) from the more accurate answer in the computation on the left.
Section 5.  Make a reasonable judgment about the precision of an approximate/ measured number from the context in which it is presented.  

Whether we are communicating the precision/imprecision of measured values by rounding or by noise (standard deviation) the same principle applies: When reporting a measurement, the reported value should not overstate or understate the precision of the measurement.  To carry this requires understanding the way that technical people read and write approximate numbers.  For instance, the value 31.0 does not have the same meaning as the number 31.  Since the extra zero does not change the numerical value of the number, the only reason for including it is to clarify that 31.0 is measured accurately to the nearest tenth, where 31 is measured accurately only to the nearest one.  

Thus, if the person reporting the number was paying attention to communicating the result of a measurement process carefully, you should be able to look at the implied rounding precision of the number and know how precisely the number was measured unless other, more specific information was given about the precision.  Notice that the rules for identifying significant digits in a number give the same answer for its precision as rounding precision.
Example 6:   An angle is reported as 40.0º 

a. What is the implied rounding precision?

b. What interval of actual values is implied by that rounding precision?

c. How many significant digits does this number have?  (Which digits are significant?)
d. What rounding precision does the number of significant digits give?

e. What interval of actual values is implied?

Solution:   
a.  The implied rounding precision is to the nearest  0.1º.

b.  Draw the number line with 40.0º is between 39.9º and 40.1º.  Then add a zero to each of these in order to make it easy to label the values halfway between them to get the interval is 39.95º to 40.05º.

c.  The significant digits are underlined:   40.0   So there are three significant digits.

d.  The implied rounding precision of the significant digits method is to the nearest  0.1º.

e.  This gives the same interval as in part b.
Comment:  We would clearly not think of this angle as exactly 40º because then there would be no need for the person who reported this to give the extra zero.  The only reason for that zero after the decimal point is to indicate the rounding precision.

Example 7:  On one page of a financial report, expenditures in various categories are listed as $12,000, $18,000, $20,000, $27,000, $40,000, and $47,000.   What is the implied rounding precision of each of these numbers?
Solution:  If we saw $20,000 as a number alone, it would not be clear whether it should be considered to be rounded to the nearest ten thousand, the nearest thousand, the nearest hundred, etc.  But in a list like this, we see that several of the numbers are rounded to the nearest thousand.  Since a person writing a report generally wants to report comparable numbers to the same precision, and all of these have zeros in the last three decimal places, we conclude that these numbers are all rounded to the nearest thousand dollars.

Example 8:  A surveying problem lists one side of a right triangle as 600 feet and the opposite angle as 42.7º.  You are to compute the hypotenuse.  How precisely should it be reported?

Solution: It is not reasonable to assume that the length is only correct to the nearest hundred feet.  If a person were going to the trouble to measure the angle to the nearest tenth of a degree, it is not sensible to believe that he would only measure the length to the nearest hundred feet.  The best solution would be to inquire about the precision of the 600 feet with the person who measured it.  But, if that is not feasible, most people in technical areas would assume that, in this context, both the 600 should be considered as a fairly exact number.  At least it should be considered as if it were measured precisely enough to not substantially influence the precision of the answer to the question in the problem.   To compute the length of the hypotenuse of this triangle, let the precision of the angle alone determine the precision of the answer.
Example 9:  When numbers end with zero (or multiple zeros) it is not always clear what rounding precision was used.  Often you must look at the context to decide what seems sensible.  Then you must be able to identify the interval of actual values for that rounding precision.  Here are some examples, some correct and some incorrect, with discussion.  
	Reported number
	Interval
	Sig. Digits
	Comments 

	6000 feet
	5995 to 6005 feet 
	6000
or

1 sig digit
	Wrong!  (Mismatch)  
Your interval implies this number is rounded to the nearest 10.  That means the first three digits are significant, not just 1. It is true that the 6000, as written, implies only the digit 6 is a significant digit, but that is correct only if you believe it is really rounded to the nearest thousand.  Your interval indicates that you don’t believe that.  See next. 

	6000 meters
	5500 to 6500 meters
	 6000

or

1 sig digit
	Could be correct!  Looking at the interval helps you interpret the precision in measurement problems in which you see numbers like 6000.  The “rules of significant digits” or “rules of implied rounding precision” say that this number has only the 6 as a significant digit, but if you don’t believe this interval is reasonable in the context then you don’t believe that the number really has only the 6 as a significant digit and you should look more deeply.  See below.

	6000 yards
	5995 to 6005 yds.
	6000

or

3 sig digits
	Could be correct! If 6000 is in a context where it doesn’t make sense to think of it as being rounded to the nearest thousand, an astute person will look at the context and think of an interval that would convey a reasonable precision for the measurement.  If rounded to the nearest ten feet makes sense, as this interval implies, then three significant digits is the correct way to convey that belief in the language of significant digits.  The person reporting the number could have reported 
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 to be  completely clear about this precision.  But sometimes people don’t want to use the scientific notation method of being completely clear and so the reader has to use other clues in the description to determine the precision.  

	6000 yards
	5999.5 to 6000.5 yds.
	6000
or

4 sig digits
	Could be correct! Same discussion as immediately above, except that rounded to the nearest foot makes sense.  So that means we would say four significant digits.  The clearer report of this number would have been 
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	6000. yards
	5999.5 to 6000.5 yds.
	6000.
or

4 sig digits
	Definitely correct! Including the decimal point implies that all the digits to the left of the decimal are significant.  Since this is four significant digits, then it is rounded to the nearest whole number, just as our interval implies.  This notation would be used by some people who don’t want to use scientific notation and need to convey that this number is rounded to the nearest one yard.  

	40.0 meters
	39.5 to 40.5 meters
	40.0
or
3 sig digits
	Wrong! The 40.0 is unambiguous. The person who wrote that rounded value would not have included the last zero unless they meant that it was rounded to the nearest tenth of a meter. You have correctly identified the 3 significant digits, but your interval says that’s not what you believe about the precision. When you round to the nearest tenth, then the plus and minus half must be in the hundredths place.  

	40.0 meters
	39.95 to 40.05 meters
	40.0
or 3 sig digits
	Correct! When you round to the nearest tenth, then the plus and minus half are in the hundredths place.  

	42˚
	41.5˚  to 42.5˚
	The angles 42˚ and 3642˚ are coterminal, so they would be measured with the same precision.  Furthermore, no one would measure an angle accurate to only the nearest 10 degrees.  Putting these ideas together, the scientific community has agreed to count the significant digits for any angle, which is correct to the nearest degree, as 2 significant digits.  

	50˚
	49.5˚  to 50.5˚
	

	3642˚
	3641.5˚  to 3642.5˚
	

	7˚
	6.5˚  to 7.5˚
	


Section 6:  What method should we use to determine how to communicate our answer for a value calculated from measurements?
Error propagation.  
This is a clear method to use when we want to identify the largest and smallest actual values for the computed value.  It was covered in Topic I and you should be able to do it using any formulas in this course – trig formulas and all other formulas.  I do not expect students to do this on many problems, because it is rather long and tedious.  But it is important, because it gives the “right answer.”  Use this method when specifically asked to do so, and your final answer for the calculated value will be an interval. Remember what we learned with addition and subtraction – it is not always clear which combination of the highest and lowest values for the input variables will result in the highest and lowest values for the calculated output.  Probably you should do all combinations and then see which is the highest and lowest.
Significant Digits.  

The idea is simple:  the result of a calculation with measured numbers should be reported at the same level of precision as the least-precise measured value that went into the calculation.     Use this method to report the final answer on any problem involving computations with measured values for which you didn’t receive special instructions to do something else.  Your final answer for the calculated value will be one number (not an interval) and the implied rounding precision of the number tells the reader your idea about the accuracy.  

Arbitrary rule in this class.   
After calculating the output value as if all input values were exact, and reporting the result of your calculation to about six decimal places, then round the result to three decimal places.  Use this whenever it seems to you that all numbers given in the problem are intended to be exact.  If you are not sure whether you should use this or significant digits, then explain why you aren’t sure and then choose a method to use.  Again, if you give good reasons for what you are doing, even if it is not what I expected, you will get most of the credit and perhaps all the credit.  If you use this with no explanation when I expect that you would have used significant digits to report the answer, it will not cost you very much credit at all.  So don’t spend much time trying to decide.
Most of the time:

Most of the time in this class, you should use the method of significant digits to report your answers.  It’s fast and easy.  The drawbacks are that it doesn’t convey the precision of the computed value very well, and, if you try to learn all the rules to do all types of problems in the world this way, it can be overwhelming.   But you don’t need to learn all of those rules.  The portions of the rules we need in this class aren’t very hard.  And I will be pretty lenient about grading your work.  If it is unclear to you how precisely a number is being reported, say that.  Then say what seems to you to be the most reasonable interpretation of how precisely it is being reported and do the rest of the problem consistent with that.   If you give good reasons for what you are doing, even if it is not what I expected, you will get most of the credit and perhaps all the credit.
Why don’t you have to learn all the details of the method of significant digits?

In this course, it’s not worth the time and energy it would take to learn it thoroughly.  I want you to spend your time and energy learning better methods. 
To learn more about the details of the method of significant digits


There is a supplement for this topic that has details.   Read that if you wish.  I will answer questions on it for you outside of class.  

Section 7.  Solving problems and checking solutions using diagrams.

In Topic F, when we discussed diagrams, we didn’t talk about measurement error, but obviously there is measurement error involved when you measure lengths and angles on the diagram.    In fact, it is reasonable to assume that the errors you make in constructing and measuring the diagram are the largest measurement errors involved and so they dominate the errors in the answer.  Thus, when making a diagram, consider all given numbers as exact.  To emphasize the possible errors in measurement on the diagram, report all values that were not given, but only measured on the diagram, with a reasonable interval for the actual values.  Not everyone will have intervals of the same size.  The size of your intervals should reflect how carefully done your diagram is.  Notice that different students will have different sized intervals. In fact, the same student might have different sized intervals at different times, depending on how quickly or carefully the diagram is done. It is not necessary in this course to have exceedingly carefully done diagrams.  Do them carefully enough to be useful for checking your more-precise calculations using trig/geometry.   But don’t take a lot of time on them.  

Example 10.  Suppose a 10-foot ladder is leaning against a wall, making an angle of 55º with the ground.  Use a diagram to determine how far the bottom of the ladder is from the bottom of the wall.  
Solution:  Assume we have a hand-drawn diagram, with scale factor 1 cm to 2 feet.  
· Draw a horizontal line and mark a point on the left end for the bottom of the ladder.  
· Measure an angle of  55º at that point on the left end and draw the line for the ladder.  
· Measure 5 cm along the line which is the ladder.  Mark that with a point which is the point the top of the ladder touches the wall.  
· Using a right triangle, construct “the wall,” which is a line perpendicular to the base line (along the ground) that goes through the point just identified as the point that the top of the ladder touches the wall.  
· Measure along the baseline to between the bottom of the ladder to the bottom of the wall. 
· I found that the line measured 2.7 cm.  I estimate that the actual value of that measurement should be between 2.6 and 2.8 cm. 
· Since 1 cm is 2 feet, that means that I estimate the distance along the ground to be between 5.2 feet and 5.6 feet.  
Section 8:  Comparing various ways of communicating the results of computations with measured numbers.

Example 11:  In a right triangle with measured values A =70( and b = 32 ft., find the length of the other side that is not the hypotenuse.  
a. Find the formula for the missing value in terms of the measured values.  
b. Use that formula to compute the missing length.
c. Use the arbitrary rule of three decimal places to report the answer.

d. Use the method of significant digits to report the answer.

e. Use the method of Topic on Error Propagation for rounded numbers to report an interval for the actual values the output variable could be.

f. Discuss what information each of these answers implies/gives about the possible error in the computed value of the output variable.

g. If you care about reporting the computed output value, including the possible error, as clearly and accurately as possible, which method would you use to report the answer? Why?
h. If it were important to you to have a more precise answer for the output value, which of the two input variables should you try to measure more precisely? (Or are they about the same?)
Solution:

a. What is given is an angle A and the side b adjacent to it, so the “other side that is not the hypotenuse” will be the side a opposite to angle A.  The relevant trig equation is therefore 
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c. a = 87.919 ft (three decimal places)
d. The measured number of length, 32 ft, has two significant digits and the measured angle is only correct to the nearest degree, so it is considered to also have two significant digits.  Since we want the result to be given to the least number of significant digits in any input number we used to compute it, then we want the result to be given with two significant digits:   a = 88 ft 

e. The range of actual values for angle A is 69.5˚ to 70.5˚.  The range of actual values for side b is 31.5 ft to 32.5 ft.  Use the formula four times to compute the length of side a for four different sets of measurements.  
	
	A = 69.5(
	A = 70.5(

	b = 31.5 ft
	Computed a = 84.25
	Computed a = 88.95

	b = 32.5 ft
	Computed a = 86.93
	Computed a = 91.78



Thus, the length of side a is between 84.25 ft and 91.78 ft.
f. The result of “87.919 ft” (rounded to three decimal places) from (b) implies an interval 87.9185 ft < a < 87.9195 ft.  
The result of “88 ft” (method of significant digits) from (c) implies an interval of 87.5 ft < a < 88.5 ft.  
The result from (d) ( error propagation) shows that the interval of possible lengths is 84.25 ft < a < 91.78 ft.
g. The result from the error propagation method, (d),  is based on the actual precision of the given measured angle and length and so is the correct answer to the question of what interval of actual values is possible for the computed length, given the measured angle and length.  

The result from the arbitrary method of rounding to three decimal places, (b), implies a very unrealistic precision of the computed length.  In standard algebra/calculus math classes, we usually round final answers by a method something like this.  It is convenient, but complete ignores the concept of the precision of the computed value. 

The result from the method of significant digits, (c), also implies an unrealistic precision of the computed length, but at least it does imply some imprecision, which is definitely better than the arbitrary method of just rounding the result to three decimal places.   

Therefore the result from the method of error propagation, (d), is the best method to use in situations where the amount of potential error is important.
h. Look at the table we computed for the error propagation method, in part (d).  
The horizontal difference in the computed length of a when using the two extreme angle values (when the length of b is not changed) is 4.70 ft in one case (88.95 – 84.25) and 4.85 ft in the other case (91.78 – 86.73).  
The vertical differences in the result for a when using the two extreme values for the length of b (when the angle A is not changed) are 2.68 ft and 2.83 ft.  
The difference in the angle measurements leads to a larger difference in the computed length of side a  than the difference in the measurements of the length of side b does.  Therefore in this case the result for side a is more sensitive to the angle measurement than to the side b measurement.  That means, if we want a more precise answer for the length of side a, it is more important to improve our measurement of angle A than our measurement of the length of side b.  

We could check that by assuming we had one more digit of precision in each of the measured values, separately, and seeing the result of that.   See these computations below.
Measure the angle A more precisely:
	
	A = 69.95(
	A = 70.05(

	b = 31.5 ft
	Computed a = 86.31
	Computed a = 86.78

	b = 32.5 ft
	Computed a = 89.05
	Computed a = 89.54






      Measure side b more precisely: 
	
	A = 69.5(
	A = 70.5(

	b = 31.95 ft
	Computed a = 85.45
	Computed a = 90.22

	b = 32.05 ft
	Computed a = 85.72
	Computed a = 90.51


These results confirm that in this case increasing the precision of the angle A measurement would result in more improvement in the computed a value than increasing the precision in the measurement of the length of b.

Exercises:  
Part I.  1 – 11.  Read each of the eleven examples carefully and, for each, write whether you understand it or whether you have any questions.
Part II.  
12.  The volume of a right circular cylinder is 
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, where r is the radius and h is the height.  Which numbers in this formula are exact?

For the following four problems, do these steps.

a. Use the arbitrary rule of three decimal places to report the answer.

b. Use the method of significant digits to report the answer.

c. Use the method of Topic I (Error Propagation) to report an interval for the actual values the output variable could be.

d. Discuss what information each of the three answers implies/gives about the possible error in the computed value of the output variable.

e. If you care about reporting the computed output value, including the possible error, as clearly and accurately as possible, which method would you use to report the answer? Why?
f. If it were important to you to have a more precise answer for the output value, which of the two input variables should you try to measure more precisely? (Or are they about the same?)  

13. Suppose the population of fruit flies in an experiment is modeled by the formula 
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 where P is the number of fruit flies in the population on t days after the experiment began, where t goes from 0 to 10 days.  Assume that 1.39 is an exact number, but that the 570 and any numbers for t are measured numbers.  Find the number of fruit flies in the population at  
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14. In a right triangle with measured values 
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 find the length of the other side that is not the hypotenuse.  (Remember to use two significant digits for the angle measurement.)
15. In a right triangle with measured values 
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 find the length of the hypotenuse.
16. In a right triangle with measured values 
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The actual values could be  85.45 ft < a < 90.51 ft, a range of 5.06 ft





The actual values could be 86.31 ft < a < 89.54 ft, a range of 3.23 ft.
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a = ?





b = 32ft
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