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Topic X.  Approximate Numbers, Part VI.
Reducing Noise by Averaging Multiple Measurements.  A Mathematical Formula
Objectives:

1. Learn that when noisy measurements are averaged, the usual effect is partial cancellation, where some but not all of the noise in one direction is balanced by noise in the opposite direction.

2. Be able to recognize situations where averaging or similar approaches would reduce the error in measurements.

3. Compute how much the noise in the averaged result will be reduced by averaging a specified number of independent measurements.

4. Compute how many independent measurements must be averaged together into order to attain a specified lower level of noise in the averaged result.

Explorations:
[1] If you flip four coins, which of the following results do you think is the most likely?


[Case A] the coins land all showing the same face (i.e., all heads or all tails)


[Case B] three coins show the same face, one shows the other face

[Case C] the coins show equal numbers of each face: two heads and two tails

— A list of the 16 possible different combinations of heads and tails for four coins —
HHHH HHHT HHTH HHTT HTHH HTHT HTTH HTTT THHH THHT THTH THTT TTHH TTHT TTTH TTTT
If 10 coins are flipped rather than just 4, what do you think will happen to the probability percentages for the “all the same face” and “equal numbers of each face” cases?
[2] A foundation interested in child welfare asks a researcher to make a good estimate of the average weight at birth of the 377,476 children born in Texas in 2003, but to spend as little money as possible getting the information.  The state records office agrees to provide as many randomly-chosen records as desired (with all names removed), but will charge a $2 copying fee for each record provided.  What kind of information is needed to enable the researcher to know how many records will be enough?
[3] A new device in Tokyo emits a signal whenever a quake of magnitude 2 or higher is detected.  
[a] If 4 quakes are detected in the first full day of operation, is it safe to predict that 400 quakes will be detected in the first 100 days of operation?  How far off from that do you think that the real value is likely to be?
[b] If 400 quakes are detected in the first 100 days of operation, is it safe to predict that 400 quakes will be detected in the second 100 days?  How far off is the real value likely to be?
[4] A city wants to estimate how many out-of-state vehicles that will make use of a new park on Labor Day weekends, since state tourism funds for the park depend on how much outside use there is at that time.  A worker is assigned to count all such vehicles on the next Labor Day, but it is pointed out that this may not give a good long-term estimate because the numbers are small and the percentage may vary from year to year due to random effects.  However, a defensible estimate is needed this year for the funding application, so it is not possible to wait for a several-year average.  Someone proposes that since averaging reduces the relative noise, a dozen workers should be assigned to this task, with their results averaged.  Would this work? 
Section 1 – What Happens When Noisy Measurements Are Averaged?
The random effects that cause noise almost always act in both directions and change frequently – this leads to some measurements being higher than the average, while others are lower.  If several measurements of the same thing are taken, it is unlikely that the noise for all of them will be in the same direction.  While this is possible (just as flipping a coin could give you heads ten times in a row), it will be very rare.  Usually there will be some noise in each direction, although it is unlikely that the positive and negative noise effects will exactly balance each other.

This means that if independent measurements are averaged together, partial cancellation of the noise can be expected.  It is possible to use the formulas discussed in this lesson to mathematically predict how large this cancellation effect can be expected to be.
	Table 1. Random values from adding ( =10 noise to a base value of 100
(16 values in each column, with averages in bold at the bottom)

	99.54
	118.16
	110.91
	100.92
	108.96
	91.34
	92.99
	95.71
	99.81

	77.59
	111.01
	87.90
	98.69
	103.96
	94.93
	97.05
	103.15
	95.26

	112.29
	104.29
	106.18
	97.67
	115.30
	105.68
	111.62
	102.13
	99.38

	95.55
	92.13
	94.60
	92.83
	97.56
	99.83
	101.52
	92.78
	97.26

	120.75
	109.69
	97.15
	83.15
	116.24
	83.34
	104.92
	93.67
	125.55

	94.24
	100.26
	104.44
	99.39
	100.22
	98.44
	98.14
	102.55
	123.03

	96.48
	80.61
	88.96
	84.35
	106.44
	95.50
	96.07
	101.40
	106.14

	88.94
	91.52
	84.99
	97.51
	106.83
	91.27
	96.91
	92.05
	95.42

	97.20
	107.85
	91.87
	100.96
	98.07
	99.10
	103.48
	85.73
	95.86

	100.24
	117.76
	90.16
	108.86
	94.03
	88.42
	90.50
	109.13
	111.39

	101.62
	96.52
	117.19
	115.42
	122.01
	87.91
	90.87
	99.94
	93.69

	94.14
	104.32
	90.07
	99.05
	91.83
	84.77
	113.75
	103.46
	121.92

	113.16
	100.77
	105.78
	108.28
	101.79
	98.12
	80.07
	101.51
	86.39

	114.21
	96.35
	105.47
	104.41
	107.91
	101.58
	89.04
	113.21
	82.16

	109.32
	94.38
	113.21
	91.65
	85.64
	88.08
	103.29
	88.11
	102.73

	103.10
	83.71
	91.26
	92.71
	104.46
	104.01
	107.06
	79.33
	101.74

	
	
	
	
	
	
	
	
	

	101.15
	100.58
	98.76
	98.49
	103.83
	94.52
	98.58
	97.74
	102.36


Illustration — Averages vary less than the random values used to form them.


The numbers in Table 1 were generated by adding random noise values to a base value of 100.  Therefore numbers above 100 indicate positive noise, and numbers below 100 indicate negative noise.  The noise values come from a normal (bell-shaped) probability distribution that produces values that will, on the average, have a standard deviation equal to 10.

About 2/3 of the values in the body of the table are between 90 and 110, as can be expected when the standard deviation is 10 and average is 100.  The column averages at the bottom, however, show substantially less variation, with 2/3 of them between 97.5 and 102.5 – the averages are only ¼ as noisy as the individual values.  Clearly, averaging causes substantial cancellation of noise among the 16 values in each column.

It is no accident that the improvement factor — 4 — is the square root of 16, the number of noise-containing values averaged.  That relationship holds for all independent-noise averages.

Section 2 – How Much Does Averaging Measurements Reduce Noise?


In the common case when measurements are taken independently, the expected reduction in noise follows a simple pattern: noise becomes smaller by a factor equal to the square root of the number of measurements averaged together.  Thus averaging 100 independent measurements will make the expected noise in the average 10 times smaller than the expected noise in single measurements.   This is true regardless of which measure of noise is used, but the formula is stated in terms of standard deviation.  Mathematicians call the familiar add-then-divide average the mean of the data, so that term is often used in formulas and statistical reports when talking about averages.
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   [where n is the number of measurements averaged]

This standard deviation of the mean is also called the standard error of the mean.
The fact that averaging random measurements reduces the noise in the estimate of the true value is of great practical use.  It can be used to substantially reduce the noise in measurement results, although at the cost of making extra measurements.  This method of averaging together multiple measurements of the same thing can be thought of as a new measurement process that uses the original measurements as input and whose output is less frequent but also less noisy.  Measurement devices that let their users select different lengths of time to accumulate a measurement are making use of a similar averaging effect, and only reporting the result of the averaging process rather than reporting all the individual measurements.

Applying this formula to the columns in Table 1, we find that for averages of 16 random values, the standard deviation should be reduced by a factor of
[image: image2.wmf]16

, which equals 4.  This means that (individual = 10  for the column values will lead to (average = 2.5  for the averages at the bottom of each column.  This prediction is quite consistent with the actual values.

Example 1:  A truck scale has a noise level of (7.5 pounds for individual measurements.  What is the expected noise level for averages of 25 such measurements?

Solution:

    We will use the formula 
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  and we are given that 
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Note that this improvement ratio is the same for any definition of noise expressed in the ( noise form.  It does not matter whether the noise value is the standard deviation, a 95% confidence interval, or some other measure.  Whichever noise measure is used, averaging 25 such independent measure​ments will reduce the expected noise for that measure by a factor of 5.

Example 2:  A rangefinder has typical noise of ( 8.2 feet for measurements between 1500 and 2000 feet.  If 10 such measurements are averaged, what noise is expected in the average?

Solution:    
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So we have ( 2.6 feet for the standard error of the mean.  Note that the number of averaged measurements does not have to be a perfect square – just take the square root of however many measurements were averaged.
Example 3: The standard deviation for the averages shown at the bottom of Table 1 is 2.51.  What noise level can be expected to remain if those 9 values are themselves averaged?

Solution:  Here, nine values are averaged, each of which has noise of 2.51.   
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Section 3 – How Many Measurements Must Be Averaged To Reach A Target Noise Level?


The relationship between averaging and noise can also be used to compute how many measure​ments must be averaged to reduce the noise to any specified amount.  Solving the formula from Section 2 for n  (the number of measurements) gives the formula shown to the right. 
     Derivation:  
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Usually the result of this calculation will have a fractional part, in which case the needed number of measurements will be the next higher whole number.

Example 4:  How many measurements of the same object must be averaged together to reduce a standard deviation of 7% for individual independent measurements to a standard error of the mean of no more than 2%?
Solution: 
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 so 13 measurements will be required.

Example 5:  How many measurements of the same object must be averaged together to reduce a random deviation of 3.2 mm for individual measurements to a standard error of the mean of no more than 0.5 mm?
Solution:   
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  =  (6.4) 2  =  51.2,  so 52 measurements will be required.
Section 4 – Sample size as a form of averaging


One common form of measurement is to take a random sample of a limited number of items (called the sample) out of a large set of possibilities (called the population).  An example would be to pick a sample 100 students out of the population of 30,000 ACC students, using random choice among student ID numbers.  Political polls use this method, as do many forms of quality control and auditing.

Often the purpose of the sampling process is to estimate the overall average for some parameter of the population, such as the average height of ACC students.  In this situation, each sample height can be considered a noisy measurement of the average student height, with a standard deviation equal to the standard deviation of all student heights (about ±4 inches in this case).  This means that the standard deviation of the average of all 100 heights from the student sample can be expected to be 10 times smaller, about ±0.4 inches, because 10 is the square root of 100.
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     , which can alternatively be stated as       
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Thus averages of sample values give the same noise reduction as averages of other measurements.  Increasing the sample size is a standard method of reducing noise in statistical estimates.
Example 6: How much noise can be expected in the average height of a sample of 30 students randomly selected from a population for which the standard deviation of height is ± 4.3 inches?
Solution:  Since the sample is random, the averaging formula applies.  Therefore
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Example 7: How large a random sample of students from the population in Example 6 is needed for the average height for that sample to have an expected standard deviation of no more than 1.5 inches?
Solution:  Since the sample is random, the averaging formula applies.  Therefore
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Example 8:  A random sample of 22 cookers is taken from a day’s production and the temperature at the “low” setting is recorded for each.  Those temperatures from the individual samples have a standard deviation of 14.3˚ and an average (mean) of 151.34˚.  Report the implied estimate of the average temperature  for the “low” setting. 
Solution:  Since the sample is random, the averaging formula applies.  Therefore
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Using the guidelines for reporting average 
[image: image19.wmf]±

 noise, we round the standard deviation to 3.0˚ and then round the average to the same number of decimal places.  That is, “the average temperature at the low setting is 
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 (st dev)”  is the appropriate way to report this result.  
Section 5.  Why isn’t the sample size we need dependent on the size of the population? 

Most people intuitively believe that the size of the sample needed to estimate the average accurately should mainly depend on the size of the population.   But notice that in the formulas above, the size of the population wasn’t mentioned at all, and is not in the formula.   Why is that?  

To estimate the average accurately and precisely, we need a sample which represents the variability of the scores in the population well and we need to know how precise we wish our estimate to be.   Larger samples will enable us to give a more precise estimate, but it is not true that larger samples will necessarily represent the variability in the scores in the population better than smaller samples.  If the sample values are randomly and independently selected from the population, and if the sample is not very tiny, then it is likely that the sample values will represent the population well.   The advantage you obtain from a larger sample is that the standard deviation of the average is the standard deviation of the population divided by the square root of the sample size, which is the formula we are considering in this topic.  And, of course, larger sample sizes (larger n) do make that standard deviation of the average smaller.   The population size is not relevant to answering that question.  
Example 9.  Suppose I make chicken soup for my family (about 2 quarts.)  I add the salt and stir the soup, and then taste it to see if it is appropriately salty.   I only take one spoonful to taste and am content that is a good sample to test.  Next, suppose I am making chicken soup for a dinner at my church (about 20 quarts.)  Again, I add the salt to the soup and stir it, and then taste to see if it is appropriately salty.  I only take one spoonful to taste and am content that is a good sample.  But this population is ten times as big as the population of the soup for my family.  Why don’t I need to take ten spoonfuls?   Most of us would answer that, as long as we really stirred the pot well before we tasted, only one spoonful is needed because the salt is evenly distributed in the pot.   In the words of statistics, there is almost no variability of saltiness in this population.  So a sample of one teaspoonful is adequate to estimate the saltiness.  The size of the population is not relevant.
Example 10.  Consider this situation, described in Exploration 2 on the first page of this topic. 

“A foundation interested in child welfare asks a researcher to make a good estimate of the average weight at birth of the 377,476 children born in Texas in 2003, but to spend as little money as possible getting the information.  The state records office agrees to provide as many randomly-chosen records as desired (with all names removed), but will charge a $2 copying fee for each record provided.  What kind of information is needed to enable the researcher to know how many records will be enough?”

In this current example, would we need a different-sized sample to estimate the average weight at birth for children born in Austin, Texas in 2003 than for children born in all of Texas in 2003?    

Solution:  No, we will not need a different sized sample to estimate the average weight at birth for children born in Austin, Texas, in 2003, and the average weight at birth for children born in all of Texas in 2003.    The difference between these two questions is only in the population size, which is not relevant to determining the sample size needed.  
Section 6 – What Does It Mean For Noise Values To Be “Independent”?
Noise values are said to be independent, or uncorrelated, if the set of values does not have a pattern that permits the use of one of the values to accurately predict of the direction of other values.  This is the same idea as was used earlier in looking at residual values in modeling – independent noise values have no structural connections (called correlations in this context).


How do noise correlations arise?  Noise is the combined effect of many small events perturbing the measurement process (e.g., vibrations, echoes, power-supply fluctuations).  If some of these last long enough that the same event changes two different measurements in the same way, this will make it more likely that both measurements will deviate from the correct value in the same direction and thus be positively correlated.  It is also possible that an effect such as vibrations will repeatedly push successive measurements in opposite directions, making them negatively correlated.

While visual inspection of the residual noise graph will usually be enough to detect any significant correlations, another way to detect lack of independence (i.e., correlation) in successive measurements is to take enough data that you can see whether or not the improvement in standard deviation resulting from averaging is reasonably close to the square-root-of-n amount predicted by the independent-measurement formula.  Here are two illustrations of how correlations between noise values can affect the noise in averaged values:
Illustration of positive correlations between successive measurements: 
A meter reports the stress on one of the support cables of a radio tower every second.  An examination of the readings for a several-hour period shows a standard deviation of ±6.3 pounds for individual measurements.  However, it is found that when groups of 9 measure​ments in a row are averaged together, the standard deviation of successive averages is ±5.4 pounds.  
This actual value for (average of ±5.4 pounds is much less improvement than the ±2.1 pounds predicted by the independent-measurement formula (computed by dividing the ±6.3 pounds for individual measurements by 3, which is the square root of 9).  The reason for this effect is that many of the gusts of wind causing the noise last for several seconds, so successive measurements are not fully independent.  This means that averaging them does not cancel as much noise as expected.
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Illustration of negative correlations between successive measurements:  

A meter provides reports on lake level at noon and midnight each day.  After the long-term trendline is subtracted off, the data shows a standard deviation of ±2.7 inches for the individual measurements.  But if successive pairs of measurements are averaged, then the standard deviation of the successive pair averages is only ±0.3 inches, much less than the ±1.9 inches predicted by the independent-measurement formula (2.7 inches divided by the square root of 2 equals 1.91 inches).  This means that successive measurements (at noon and midnight) are mostly on opposite sides of the average, so they are negatively correlated and thus cancel more than expected.

The reason for this effect in this case might be that the lake is used for power generation at high-demand times, so that it is being lowered during the afternoon and evening, then refilling during the late night and morning.  
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The possibility that a time-based series of measurements will have correlation effects like these makes it important to look at the data, where such effects can usually be seen if they are significant.  The ability of people to detect patterns is far better than most mathematical techniques or automated analysis routines – make use of this advantage when you work with data, to see whether the data shows indications of correlations among successive values.

Section 7 – What If You Have Not Been Told the Individual Standard Deviation?

Sometimes you know what accuracy is needed, but are not told what the noise level of your individual-measurement process is.  In such a case, how do you know how many samples to take?  Depending on how you look at it, this question has either no answer or an easy answer.

If you aren’t told (and if the needed accuracy is good enough that it is at least possible that the individual measurements will not be that accurate), then there is no way to know what will be needed before you start to take data.  So, to begin with, you don’t know how many samples you will need to take to reach the accuracy you want.


What you do in this case is just start to take individual measurements.  After you have taken a few, you can use the STDEV function on these measurements to compute an estimate of the standard deviation for the process.  This estimate of (individual can be used with the desired (average to estimate how many samples are needed.  Take those, then check the STDEV function again (on the expanded set of measurements) to see if the expanded set of data implies that you have met the accuracy requirements.  If you use this approach, it is safest to take some extra measurements since it is possible that the computed standard-deviation value will be an underestimate due to noise.
Example 11.  Illustration of finding (individual  from the data as it is acquired: You are supplied a scale and told to find the weight of an object to an expected noise level of no more than ( = ±2 grams, reporting the average and an explanation of why you think the average meets the required accuracy.
Solution:  You need to take data to assess the stability of the scale, but you can do this as part of the process of acquiring data that you will average together to get a less noisy estimate.  First take 5 measurements (assume these turn out to be 841.076, 838.154, 852.844, 843.873, and 834.298 grams).  It is clear from looking at these that the individual-measurement process does not already meet the requirement of ( = ±2 grams.  The STDEV of the first 5 values is 7.0 grams.  If that correctly describes the process (it may be off somewhat due to noise), then the number of samples required is
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So take 8 additional samples (assume these turn out to be 850.548, 851.513, 828.097, 849.902, 832.804, 840.605, 826.339, and 838.310).  Now the STDEV of all 13 values is 8.8 grams, which indicates that the initial ( = ±7.0 grams was an underestimate.  If ( actually is 8.8 grams, the required number of samples would be 


[image: image24.wmf] 

 

2

2

  19.36, so about 20 samples are needed.

8.8

  

2.0

individualsamples

averagerequired

n

s

s

æö

æö

==

ç÷

ç÷

ç÷

èø

èø

=


To be on the safe side, take another 12 samples for a total of 25 (assume these are 845.778, 825.835, 849.394, 840.106, 834.821, 822.720, 836.997, 844.283, 828.807, 850.677, 843.916, and 833.469).  The full set of 25 values gives an average of 839.4066 grams.  The standard deviation for the individual values is ±8.911 grams.  This means that the estimated standard deviation for the average of 25 samples would be
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Thus a correct report of the weight would be “The average weight is 839.4 ± 1.8 grams (std dev)”.
Exercises:

PART I –  See the discussion on page 1 and Examples 1-11.
1. If measurements have a noise level of (10 for individual measurements, what is the expected noise level for averages of 16 such measurements?

2. A truck scale has a noise level of (7.5 pounds for individual measurements.  What is the expected noise level for averages of 25 such measurements?

3. A rangefinder has typical noise of ( 8.2 feet for measurements between 1500 and 2000 feet.  If 10 such measurements are averaged, what noise is expected in the average?

4. The standard deviation for the averages shown at the bottom of Table 1 is 2.51.  What noise level can be expected to remain if those 9 values are themselves averaged?

5. How many independent measurements of the same object must be averaged together to reduce a standard deviation of 7% for individual measurements to a standard error of the mean of 2% or less?
6. How many measurements of the same object must be averaged together to reduce a random deviation of 3.2 mm for individual measurements to a standard error of the mean of 0.5 mm or less?
7. How much noise can be expected in the average height of a sample of 30 students randomly selected from a population for which the standard deviation of height is ± 4.3 inches?

8. How large a random sample of students from the population in Example 6 is needed for the average height for that sample to have an expected standard deviation of no more than 1.5 inches?
9. A random sample of 22 cookers is taken from a day’s production and the temperature at the “low” setting is recorded for each.  Those temperatures from the individual samples have a standard deviation of 14.3˚ and an average (mean) of 151.34˚.  Report the implied estimate of the average temperature for the “low” setting.
10. Would we need a different-sized sample to estimate the average weight at birth for children born in Austin, Texas in 2003 than for children born in all of Texas in 2003?
Part II – Solve the problems listed below on a separate sheet of paper, showing your work.

11. A measurement process has standard deviation of 0.22 cc.  If we take 16 such independent measurements and average them (i.e., compute the mean), what standard deviation is expected for such averages?  
12. A measurement process has standard deviation of 32 lbs.  If we take 14 such independent measurements and average them (i.e., compute the mean), what is the standard deviation of such averages?

13. A random sample of 30 engine blocks is taken from a day’s production and the thickness of a wall is measured at the same spot in each case.  The thicknesses from the individual samples have a standard deviation of 0.041 inches and an average (mean) of 0.28352 inches.  Report the implied estimate of the average wall thickness for the day’s production.  
14. A measurement process with a standard deviation of 0.75 in is used to measure the length of a wall, giving an average of 318.354 inches for 10 independent measurements.  Report the average, including its expected standard deviation.
15. The standard deviation of a measurement process is 0.21 cc.  Approximately how many independent measure​ments would have to be averaged for the standard deviation of such averages to fall to 0.07 cc.?  
16. A measurement process has standard deviation of 0.42 in.  Approximately how many independent measure​ments have to be averaged for the standard deviation of such averages to fall to 0.10 in.?

17. A measurement process has a standard deviation of 32 lbs, and you want to know if it is feasible to average multiple measurements to reduce the standard deviation to 1.5 lbs.  How many independent measurements would this require?  What questions does the answer raise about feasibility?  
18. A measurement process has a standard deviation of 1.65 grams, and its measurements are independent and inexpensive.  Will it be feasible to use averaging with this process to produce estimates that have a standard deviation of 1.0 grams?  How many should be averaged?
19. Data taken with a measurement process shows that it has a standard deviation of 3.9 millimeters for individual measurements.  When averages are taken of groups of 10 such measurements in a row, the standard deviation of these averages is found to be 1.31 mm.  Does this result indicate that the individual measurements are correlated
20. A series of power-supply voltage measurements taken over hourly over several days shows a standard deviation of 47 millivolts.  When averaged over successive six-hour groups, however, the standard deviation of the 6-hour averages was found to be 35 millivolts.  How does this actual result compare with the prediction for averages of 6 independent measurements?  What does this imply?
21. For each of the time series graphed below, does the data seem to be independent or correlated?
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22. For the time series graphed to the right, how many successive measurements should be averaged together so that the structural noise is averaged out? 
23. Each day, a company needs to be able to weigh 80,000 surface-freight packages with a process whose standard deviation is 0.5 pounds.  The company also needs to weigh 500 air-freight packages with a process whose standard deviation is 0.1 pounds.  It uses several dozen scales to handle this task. Most are regular scales, which are cheaper to buy but whose standard deviation for each measurement is the 0.5 pounds needed for surface freight. 
It is possible to buy special scales with a standard deviation of 0.1 pounds for each measure​ment, but the overall cost per measurement for such special scales is $8.43.  The company has found that the average overall cost of making a single measurement on the regular scales is $2.17, and that each additional regular-scale measurement (on an object that has already been set in place for the first measurement) costs an average of 21 cents.  
It has been suggested that it might be cheaper for the company to use regular scales for the air-freight packages by averaging enough multiple measurements to reduce the standard deviation to the needed level.  Based on the information given, show which process would be cheaper, and by how much.
Hints —    1.   Determine how many measurements would be needed on the less-precise method to achieve the same standard deviation as the more-precise method.

2. How much would that many measurements cost?

3. Compare costs and write a sentence in conclusion.
24. The manufacturers of the special scale described in the previous problem find that they are losing business because people are adopting the use of averages of multiple measurements on regular scales.  

a. Based on the costs stated, by how much would the special-scale manufacturers have to reduce its average cost per measurement to make it competitive with the averaging process?

b. What percentage decrease would the special-scale manufacturers have to reduce its average cost per measurement to make it competitive with the averaging process?
25. An agency is responsible for regularly assessing carbon-dioxide levels at numerous locations throughout an area, and employs several crews to do this.  The regular process used for these measurements has a standard deviation of 44 parts per million, which was adequate when the required accuracy was 50 parts per million.

A new law will soon come into effect that will require that the carbon dioxide level at each site be determined with an accuracy of at least 20 parts per million.  If each measurement is independent, how many measurements from the current process will have to be averaged to achieve this accuracy?


An analysis of costs associated with this process has shown that each site assessment causes travel costs and measurement costs.  The travel costs depend on the area and are required in any case, so that they can be excluded from comparisons of different measurement techniques.  The measurement costs using the current process were found to be $32.85 for a single measurement, plus $5.41 for each additional measurement at that location.  Based on these measurement costs, what would the cost be for using the current equipment to meet the new accuracy requirement?


A company has invented a new device for this assessment which has a standard deviation of 17 parts per million.  They project that they can profitably sell it at a price that will result in an average cost (under the same conditions as before) of $75 for a single measurement, plus $16 for each additional measurement.  At that price, would this device be cheaper for the agency to use to reach the 20-parts-per-million standard? 


Some people are proposing that the accuracy requirement be changed further, to 10 parts per million.  Using the cost figures given, show what the relative costs to meet that standard would be for the current process and the proposed new device.




































The graph of the data for this time series of water-level measure�ments makes it obvious that successive measure�ments are correlated, since alternate points report levels higher and lower than average.  


Averages of adjacent pairs (or any even number of adjacent points) will fully cancel this structural noise, reducing the noise in the averages to that based on the much smaller amount of random noise.

























































































� EMBED Equation.DSMT4  ���


Formula to use to determine how many  independent measure�ments with (individual  must be averaged to reduce the standard  deviation of the average to (mean.





Examination of the residual values for this time series of stress measure�ments can tell you that successive measure�ments are not random, since most points are close to the points before and after them.  


If the data were uncorrelated, the points in each few-second time interval would be much more scattered. 


Averages of groups of adjacent points of this data will cancel less noise than expected for uncorrelated measurements.
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