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Topic ZA.  Approximate Numbers, Part IX.
Computing with Multiple Input Values – Mathematical Formulas
Objectives:
1. Learn the formula for the noise in the sum or difference of two independent measurements.

2. Learn the mathematical meaning of correlation between two measurements, and how correlation affects the formula for the noise in the sum or difference of two measurements.
3. Learn the formula for the noise in the product or quotient of two independent measurements.
Section 1 – Propagation of Single-Measurement Noise Through A Calculation

Noise in measurement processes makes measurements approximate numbers.  Similar techniques to those used with rounded numbers can determine the likely effect of the noise on values computed with the measurements.  For noise, the standard deviation ( is used (rather than the rounding precision) in investigating the effects of changes on the output of a computation using measurements as inputs.  


The simplest situation is when a single measurement value from a process with a known standard deviation noise is used as part of a calculation.  Noise may be amplified or diminished depending on the nature of the calculation.  This same situation was handled empirically earlier.  This section shows numerical and graphical ways of determining the noise expected in such a result; these can be used for any function that can be calculated or graphed.

Example 1:

[a] An angle is measured as 27.3( by a process whose expected noise is ( 1.5( (std dev).  What is the expected noise in the cosine of the measurement?

[b] Another angle is measured as 75.1( by the same process.  What noise is expected for the cosine of the measurement in this case?

Solutions: 

[a] cos(27.3() ( 0.8886 is the result for the average value

      cos(27.3( + 1.5() = cos(28.8() ( 0.8763, which is 0.0123 less than the average result

      cos(27.3( – 1.5() = cos(25.8() ( 0.9003, which is 0.0117 more than the average result

      The average of these two deviation values is (0.0123 + 0.0117) ( 2 = 0.0120

Alternatively, this could be calculated more directly as:

     (cos(28.8() – cos(25.8()) ( 2  (  (0.8763 – 0.9003) ( 2  =  –0.0240 ( 2  =  –0.0120

            Thus for this angle, a noise level of  ( 1.5( in the angle measurement will cause a noise level of  ( 0.0120 in the cosine value, which could be stated as 0.889 ( 0.012 (std dev)

[b] cos(75.1() ( 0.0854 is the result for the average value

     (cos(76.6() – cos(73.6()) ( 2  (  (0.2317 – 0.2823) ( 2  =  –0.0506 ( 2  =  –0.0253

            Thus for this angle, a noise level of  ( 1.5( in the angle measurement will cause a noise level of  ( 0.0253 in the cosine value, which could be stated as 0.085 ( 0.025 (std dev)

Note that the application of the cosine function changes the noise differently for different angles.  
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Example 1 shows that the same change in angle causes more than twice as much change in the cosine value at 75( than at 27(.  The graph of the cosine function at the right shows why – the slope of the cosine function is steeper.  The slope of a function determines its sensitivity to noise in its argument, just as it does for rounding error (this was discussed in the earlier topic on input sensitivity).
This means that when you graph a function, the steepest part is where it will be most sensitive to errors in the independent-variable values (that is, those used for the x axis).  In fact, multiplying the noise in the input times the slope of the graph at any point is one way to compute the noise in the y value (that is, the noise in the result of the function).

Enrichment – This is one of many situations where it would be convenient to have a formula that computes the slope at any point of the function you are using.  Making such derived formulas (called “derivative functions”) is one of the main things taught in calculus courses, and these functions are often already familiar from other contexts.  The derivative of the cosine function is minus one times the sine function, for example.

Section 2 – If Measurements Are Added, What Noise Is Likely In The Sum?

The direction of the random errors that constitute noise is unpredictable: each measurement is just as likely to be above the average as below it.  If two measurements from the same process are added, the error compared to the true value might double (if the errors happen to be equal and in the same direction) or completely cancel out (if they are equal and in oppo​site directions).  Usually the average effect is a partial cancellation, so that the noise of the sum of two independent measurements is more than the noise in either measurement but is less than the sum of the two noise values.  
However, in some situations the noise in two measurements may be correlated (usually because both measurements are being affected by the same source of noise during the same time period).  In this case the typical noise when the measurements are combined will differ from the independent-measurement case, depending on the nature of the correlation and the way in which the two measurements are combined.  The empirical method discussed in an earlier topic can be used to detect such correlations from sets of test measurements.
Independent measurements:


When there is no relationship between the noise in two measurements, adding the measurements will increase the typical noise to an amount proportional to the diagonal of a rectangle where other the sides are proportional to the typical noise for the two measurements.  
In the simplest case, where both independent measurements have the same noise levels, that rectangle is a square and the noise of the sum is the square root of 2 (i.e., ~1.414) times larger than the noise in each individual measurement.  The noise thus increases by about 41% instead of doubling, as it would if there were no cancellation effect.
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In the more general case, where the noise values differ, the noise in the sum can be calculated by use of the Pythagorean Theorem.  This is the same ratio that the length of a diagonal of a square has to the length of a side, and means that the noise of the sum typically increases only 41% rather than the doubling that would result if there were no cancellation effect.  


Example 2:  Two suitcases are measured to have weights of 32.37 pounds and 42.81 pounds by a scale whose standard deviation is ( 0.45 pounds.  State their total weight and expected noise.

Solution:  The expected noise of the sum is:  ( 0.45 pounds ( 
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  (  ( 0.64 pounds (std dev).


Thus the total weight is 75.18 ( 0.64 pounds (std dev).
Example 3:  An unloaded truck is weighed as 3,824.3 pounds by a process that has a standard deviation of 5.8 pounds, and the load for the truck is weighed as 159.3 pounds by a more accurate process that has a standard deviation of 1.3 pounds.  Based on this information, state the weight of the loaded truck, with an appropriate statement of expected error.

Solution:  The expected standard deviation of the sum of these two measurements is 


[image: image2.wmf]22

5.81.6 = 33.64 + 1.69 = 33.91  5.82

+@


The loaded truck thus weighs 3,983.6 ( 5.8 pounds (std dev).

Section 3 – What Noise Is Expected If Measurements Are Subtracted?

The noise in the difference of two independent measurements is computed in exactly the same way as that for a sum (exactly the same way – the squared noise values are still added, not subtracted).  Therefore the noise of the difference of two independent measurements is more than the noise of either measurement.  Since a difference may be much smaller than the measurements from which it was formed, it often happens that the relative noise of a difference is big enough to be a problem even though the noise didn’t seem significant relative to the original measurements.
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   [Expected noise for the difference of independent measurements]

Example 4:  A person is trying to determine the effect of temperature on the length of a steel rod by measuring it at a known cold temperature and a known hot temperature.  The length-measurement process he is using has a standard deviation of 1.3 millimeters.  How much noise can be expected in the difference in length that is computed from such a pair of hot and cold measurements?

Solution:  The expected standard deviation in the difference is (1.3 mm (
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 = (1.8 mm,
just as it would be for the sum of two measurements from the same process.

Example 5:  Assume the truck scale described in Example 3 is used to weigh a load by first weighing the loaded truck and then weighing the unloaded truck, with the weight of the load computed as the difference in these two measurements.  Based on the information given in Example 3, what standard deviation can be expected for this way of measuring the weight of the load?  How does this compare with the other scale described in Example 3?

Solution: In this case, both measurements are made with the truck-weighing process, whose standard deviation is (5.8 pounds.  This means that the expected standard deviation of the difference is  ( 5.8 pounds ( 
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  (  ( 8.2 pounds (std dev).  This is 6.3 times as much noise as the ( 1.3 pounds stated as the standard deviation of the other scale.

Section 4 – What If the Measurements are Not Independent?

When there is correlation between the noise values in the two measurements that are being combined, the mathematical combination rules must take that into account in order to correctly predict the combined noise.  These can be graphically illustrated by the use of parallelograms rather than rectangles to show how the noise vectors combine.   The situations that can arise are illustrated below:


Noise correlation is described by a correlation coefficient between -1 (always opposite directions) and +1 (always the same direction), with values near zero being expected for measurement sets in which the two measurements vary independently of each other.  This coefficient can be computed directly from sets of measurement data by using the spreadsheet function CORREL.


The value of the correlation coefficient is equal to the cosine of the angle between the measurement vectors shown above.  It is thus positive for acute angles, negative for obtuse angles, and zero for right angles (which correspond to the independent-variable case).

The full formula for the standard deviation expected from processes that add two measurements (which need not be independent of each other) adds a correction term to the independent-measurement case described earlier.  (For independent measurements, the correction is zero because the correlation coefficient is zero.)

(σsum)2  = (σfirst)2 + (σsecond)2  +  2 × correlation × σfirst × σsecond  

For the difference of two measurements, the full formula is almost the same, but in this case the correction term is subtracted because a positive correlation between the noise in the two measurements will lead to smaller typical differences between them.

(σdifference)2  = (σfirst)2 + (σsecond)2  −  2 × correlation × σfirst × σsecond  
Section 5 – What About Multiplication And Division Of Measurements?


For multiplication and division, it is the relative noise (the noise as a fraction of the measurement size) that is combined to give the expected noise relative to the product of the two independent measurements.  That is:
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  [relative-noise formula for multiplication, independent input values]

This can be rearranged as      
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 [absolute-noise formula for multiplication, independent values]

Example 6: The area of a lot was determined by multiplying its width (measured as 152 feet) by its depth (measured as 218 feet).  The lengths were measured by a process whose standard deviation is 2% of the measurement size.  What are the relative and absolute noise levels for the area calculated this way?

Solution: 


Since the relative standard deviation for the length measurements is known to be 2%, the relative noise of the area measurement can be calculated with the relative-noise formula:
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The absolute noise level can be determined by multiplying the area times the relative level:
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Therefore this area measurement should be stated as:

33,140 ( 930 sq.ft. (std dev)      or as       33,140 sq.ft. ( 2.8%

Division of measured values affects noise the same way as multiplication, except that the the expected noise calculated is relative to the quotient of the two independent measurements:
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      which can be rearranged as      
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Example 7:  Several ramps are being built based on an intended “run” (horizontal distance) of 300 inches and an intended “rise” (vertical distance) of 24 inches.  It has been found that the run length is manufactured with a standard deviation of 2.5 inches and the rise height has a standard deviation of 0.65 inches.  State the standard deviation for the slope of the ramp, which is defined as the ratio of the rise height to the run length.

Solution:  Using the standard deviations and intended values for rise and run, the formula gives:


[image: image12.wmf]2222

/

240.652.5

    

30024300

              0.080.0007340.000069  0.08

0.0283  

riserun

riserun

rise

runriserun

ss

s

æöæöæöæö

=´+=´+

ç÷ç÷ç÷ç÷

èøèøèøèø

=´+@´@

0.0023


Note that in the example above the (0.65-inch noise in the rise makes a much bigger contribution to the result (0.000734 under the square-root sign) than the (2.5-inch noise in the run (0.000069).  This happens because in this situation what matters is the relative noise, not the absolute noise.  

One of the main benefits of using mathematics to analyze noise propagation is that it helps identify which sources of noise are the main cause of the noise that is causing problems – in this case, it would be a waste of money to make the run-length values more uniform until the rise-height variation is under better control.  Even if there were no noise at all in the run-length values, the (0.65-inch noise in the rise heights would still result in a slope variation of 0.0022, a reduction in noise of less than 5%.

EXERCISES

PART I – Repeat examples 1-7 from the discussion pages, which are repeated below.

1.  [a] An angle is measured as 27.3( by a process whose expected noise is ( 1.5( (std dev).  What is the expected noise in the cosine of the measurement?  [b] Another angle is measured as 75.1( by the same process.  What noise is expected for the cosine of the measurement in this case?

2.  Two suitcases are measured to have weights of 32.37 pounds and 42.81 pounds by a scale whose standard deviation is ( 0.45 pounds.  State their total weight and expected noise.

3.  An unloaded truck is weighed as 3,824.3 pounds by a process that has a standard deviation of 5.8 pounds, and the load for the truck is weighed as 159.3 pounds by a more accurate process that has a standard deviation of 1.3 pounds.  Based on this information, state the weight of the loaded truck, with an appropriate statement of expected error.

4.  A person is trying to determine the effect of temperature on the length of a steel rod by measuring it at a known cold temperature and a known hot temperature.  The length-measurement process he is using has a standard deviation of 1.3 millimeters.  How much noise can be expected in the difference in length that is computed from such a pair of hot and cold measurements?

5.  Assume the truck scale described in unloaded-truck problem above is used to weigh a load by first weighing the loaded truck and then weighing the unloaded truck, with the weight of the load computed as the difference in these two measurements.  Based on the information given in the earlier problem, what standard deviation can be expected for this way of measuring the weight of the load?  How does this compare with the other scale described in the earlier problem?

6.  The area of a lot was determined by multiplying its width (measured as 152 feet) by its depth (measured as 218 feet).  The lengths were measured by a process whose standard deviation is 2% of the measurement size.  What are the relative and absolute noise levels for the area calculated this way?

7.  Several ramps are being built based on an intended “run” (horizontal distance) of 300 inches and an intended “rise” (vertical distance) of 24 inches.  It has been found that the run length is manufactured with a standard deviation of 2.5 inches and the rise height has a standard deviation of 0.65 inches.  State the standard deviation for the slope of the ramp, which is defined as the ratio of the rise height to the run length.

PART II – Work the following problems on a separate sheet, showing all your work.

8. State the sum of independent measurements 83.2
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2.7 mm (std dev) and 293.7
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3.5 mm (std dev), stating it along with the noise value expected.

9. State the sum of independent measurements 138.234
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0.287 mm (std dev) and 196.853
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0.395 mm (std dev), stating it along with the noise value expected.
10. State the difference of independent measurements 76.983
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0.136 mm (std dev) and 34.928
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0.295 mm (std dev), stating it along with the noise value expected.

11. A measured value for the side s of a square is 8.0
[image: image19.wmf]±

0.65 feet.  We will use that value as input to the area formula 
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.  Write the result for the area A as value
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std.dev.

12. A measured value for the side s of a different square is 20.0
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0.65 feet.  We will use that value as input to the area formula 
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.  Write the result for the area A as value
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std.dev.

13. An angle is measured to be 16
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0.42 degrees.  We will use that value as input to the tangent formula 
[image: image26.wmf]tan

q

.  Write the result for the tangent in the value
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std.dev format.

14. A different angle is measured to be 76
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0.42 degrees.  We will use that value as input to the tangent formula 
[image: image29.wmf]tan

q

.  Write the result for this tangent in the value
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std.dev. format.
Negative correlation of noise measurements results in smaller typical noise in the sum.





Typical noise of second measurement





Figure 1.  When independent measurements from different random noise processes are added, the noise of the sum has a  c2 = a2 + b2 relationship (like that of the hypotenuse to the sides of a right triangle) to the noise of the measurements being added.
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Positive correlation of noise measurements results in larger typical noise in the sum.
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