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Topic J.  Measurement Data Sets
Objectives:
1. Use a spreadsheet to find the average value for a set of measurements of the same thing.

2. Use a spreadsheet to compute the deviation of each measurement from the average for the set.

3. Use a spreadsheet to find the standard deviation for a set of measurements or deviations.

4. Be able to make dot plots of measurement sets.

5. By looking at a set of measurements or their dot plots, be able to quickly eliminate unreasonable estimates of the average or standard deviation without using a spreadsheet or calculator.
6. Without using a spreadsheet or calculator, be able to quickly eliminate datasets or dot plots are clearly inconsistent with a given average and standard deviation.

7. From a set of measurements of a calibration object, state the bias and precision of the measurement process for that object.

8. From a sequential set of measurements of a calibration object, detect whether the measurement process is showing significant calibration drift.

9. For given sets of data on two variables, be able graph them by hand or using a spreadsheet.
10. Be able to make the inverse graph for a dataset.
11. Use a graph of a dataset to recognize whether it could be reasonable to use x to predict y.

Overview

In previous topics, we have dealt with numbers produced from formulas.  Those formulas fully describe the relationship between the input and output values.  In this topic, we will begin to use data gathered from measurements.  This means that we will need to concern ourselves with noise and bias in addition to the underlying actual values. 
We measure objects because we want to know the size of some property that could be any of a continuous range of values (e.g., length or weight).  Thus measurement devices must be sensitive to small changes.  However, this sensitivity means that repeated measurements will differ slightly even for the same object, due to small uncontrollable variations in the measurement device or in how it is used.  The result of this situation is that a report on a measurement of an object raises several questions: 
· What is the typical value that the measurement process used produces for this object?

· How well does the typical measurement value match the actual value for the object?

· How much do the individual measurement values deviate from the typical value?

These questions are addressed in this topic with the ideas of average, bias, and standard deviation.
Some datasets, especially those used for calibration, consist of multiple measurements of the same thing.  Such data can be used to determine the noise in the measurement process, which is best described by the standard deviation computed from the data by using the STDEV spreadsheet function.  If the true value is known for the object being measured, the bias in the measurement process can be estimated from the amount that the average of the measurements differs from the true value for the object.

Some measurement sets consist of pairs of values of different kinds (e.g., the age and diameter of each oak tree in a town). Such two-variable data is well suited to graphing on an x-versus-y coordinate system.  Graphs of that kind show the pattern of the relationship between the variables, and indicate how feasible it might be to use the value of one of the variables to predict the value for the other.

Graphs can look quite different depending on the scales and ranges used, so some care is needed in comparing and interpreting them.  This is especially true for graphs made by spreadsheets, since they often automatically set the x and y ranges and scale to values different than those people would choose.
Generally, the variable that is considered to be the cause of the relationship is assigned the role of x in the graph and that which is considered to be the effect is assigned the role of y.  Thus for the tree data age might be used as x and diameter as y.  But sometimes the inverse relationship may be more interesting, such as when diameter data is being used to estimate age.  
Section 1:  What single value best describes a set of repeated measurements of the same thing?
An average is a numerical value that is computed to be representative of a set of several values of the same kind.  When the values are several measurements of the same object, we expect for the average to be close to the actual value for the object (if it isn’t, the measurement process is biased – see section 6).

There are many different ways of computing averages, but only three are often applied to measurement data.  The mean is an average that equals the sum of the values divided by the number of values (this average is sometimes called the arithmetic mean to distinguish it from other averages that also involve dividing by the number of values).  A trimmed mean is the mean of part of the data, excluding some of the highest and lowest data values (e.g., a 10% trimmed mean would discard the top and bottom 10% of the data before computing the mean).  The median is a different kind of average, determined by finding the value that has half the measurements above it and half below it — if the measurements are rearranged by sorting in order of size, the median is the value in the middle of the sorted list (or halfway between the two middle values if there are an even number of values).
Each type of average has its advantages: the mean is easiest to calculate and varies the least for normal measurement datasets, while the median is less influenced by large deviations from the average and thus gives a more “typical” average in situations where the values go much further in one direction from the average than they do in the other direction (e.g., annual income).  A trimmed mean can be considered a compromise between the mean and the median, and is often used when the data is generally suitable for using the mean but occasional large errors are expected (e.g., from a few unskilled workers).
The mean is usually the type of average that is most useful when working with measurements.  Many measurement concepts such as standard deviation are defined in terms of the mean, and measure​ments will usually have the symmetrical “normal” distribution for which the mean is the most useful central measure.  Thus in this course we will always use the mean for averages unless some other type of average is explicitly asked for.   In spreadsheets, the mean is computed by applying the “AVERAGE” function to the set of measurements (e.g., “=AVERAGE(A1:A20)”).  Spreadsheets also have “MEDIAN” and “TRIMMEAN” functions if you encounter a situation where one of those averages is asked for.  
	Example 1: Compute the average of these 13 repeated measurements of the same object two ways: [a] with a calculator and [b] with a spreadsheet.
[a] Solution using a calculator:  Add the 13 values to get 96.26, then divide this sum by 13 to find the mean value of 7.404615385.  
[b] Solution using a spreadsheet:  Copy the values to a spreadsheet (e.g., put the top numerical value in cell A2), then compute the mean, 7.404615385, by putting the appropriate formula (e.g., “=AVERAGE(A2:A14)”) into any other cell.
What rounding is appropriate for the average?  Obviously the nine decimal places produced by the computation are excessive.  If the sum is accurate to two decimal places, then one-thirteenth the sum should be accurate to about three decimal places.  On the other hand, there is a lot of variation in the measurements, so higher precision seems inappropriate.  The best rule for determining appropriate rounding for measurement averages is shown and explained in the next section; it implies that the appropriate rounded value in this case is 7.40.
	Calibration

Measurements
7.11

7.65

7.43

7.55

7.33

6.59

7.44

7.71

6.96

7.26

8.06

7.35

7.82




Section 2:  How much do individual measurements deviate from the average value due to noise?
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If the 13 measurement values listed in the example above are plotted as points on the number line (as in the figure shown below), we see that they are scattered around the average value, with the greatest concen​tra​tion close to the average (marked by the arrow), but with a few points further away.  This is a typical distribution of measurement data, although the exact positions and spacing will vary randomly for each dataset, especially for the highest and lowest values.  
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Example 2:  Using the spreadsheet from example 1[b], compute the deviation of each measurement from the average of all the measurements.  This is the noise, one cause of measurement error.
Solution:  (assuming that the data is in column A, with a label in A1 and data in A2 through A14)

  [i] Put the label “Average” into cell B1

 [ii] Enter the average value, 7.40, into cell B2, to the right of the first measurement value.

[iii] Then copy the average down column B so that it is to the right of each of the 13 data values.


[iv] Put the label “Deviations” into cell C1.


 [v] Enter the formula “=A2-B2” into cell C2.

[vi] Spread the formula in C2 down all the data rows (it will become “=A3-B3”, “=A4-B4”, etc.)
Now the noise deviation of each measurement value from the average is in column C, as shown below.

		A

	B

	C


	1

	Measurement

	Average

	Deviation


	2

	7.11

	7.40

	-0.29


	3

	7.65

	7.40

	0.25


	4

	7.43

	7.40

	0.03


	5

	7.55

	7.40

	0.15


	6

	7.33

	7.40

	-0.07


	7

	6.59

	7.40

	-0.81


	8

	7.44

	7.40

	0.04


	9

	7.71

	7.40

	0.31


	10

	6.96

	7.40

	-0.44


	11

	7.26

	7.40

	-0.14


	12

	8.06

	7.40

	0.66


	13

	7.35

	7.40

	-0.05


	14

	7.82

	7.40

	0.42



	
	Things to note about these noise deviations:

· 6 of the 13 deviations are negative, and 7 are positive

· The lowest deviation is -0.81, and the highest is 0.66.  Each of these extreme points has a significant separation from the other points.
· 9 of the 13 measurements deviate from the average by less than 0.32

· 6 of the 13 measurements deviate from the average by less than 0.16


These results, which are typical of the noise in measurement data, suggest the following conclusions:

· Measurements deviate randomly above and below their average value.
· Smaller noise deviations are more frequent than larger deviations, but some noise deviations are several times as large as the most typical deviations.
Standard deviation:  Just as there are several ways to compute averages, there are several ways to compute the amount of noise in a measurement process.  The method that is most widely used is the standard deviation, a special kind of average of the deviation values.  Usually, about 2/3 of the measurements are closer to the average than the standard deviation, and about 1/3 of the measurements are further from the average.  The formula for standard deviation is discussed in section 5, but for repeated measurements like these you can use the spreadsheet function STDEV to compute it.
Example 3:  Use the STDEV spreadsheet function to compute the standard deviation for the data.

Solution:  Enter the formula “=STDEV(A2:A14)” into an empty cell, giving the answer 0.382549.
It is almost always appropriate to round standard-deviation values off to two significant digits, giving a value of 0.38 in this case.  Standard deviation is often symbolized by the lower-case Greek letter sigma and preceded by a plus-or-minus sign as a reminder that errors can be either above or below the average, so you might see this result stated as σ = ±0.38.

A compact form of reporting both the typical value and the noise for a set of a measurement process is to state the average and standard deviation connected by a plus-or-minus sign, with the standard deviation rounded to two significant digits and the average rounded so that its precision matches that of the standard deviation.  In this form, we would say “The measurements average 7.40 ± 0.38”.
	Example 4:  Summarize the measurements shown to the right by stating their average and standard deviation.

Solution:

  [i] Copy the data to a spreadsheet, putting it into rows 1 to 12 of column A.


 [ii] Enter the formula “=AVERAGE(A1:A12)” into a free cell, getting 274.0816.


[iii] Enter the formula “=STDEV(A1:A12)” into another free cell, getting 5.692778.

[iv] Round the standard deviation to 5.7, which is two significant digits.


 [v] Round the average to 274.1, the same precision as the rounded standard deviation


[vi] Combine the value into a compact report: “The average is 274.1 ± 5.7”
	267.634

276.067

282.348

276.288

265.767

270.201

272.116

278.788

266.855

275.864

274.484

282.567




Section 3:  How do errors from measurement noise differ from errors due to rounding?

Several things make it more difficult to report measurement precision than rounding precision:


[1] Usually, rounding errors of all different sizes up to half the rounding interval are about equally likely, and no rounding errors are greater than that.  If all Austin utility bills were rounded off to the nearest dollar, every rounding error from -$0.50 to +$0.49 would occur for about the same number of households, but there are never any rounding errors of $0.51.  This “uniform” distribution is typical of rounding errors, but not of measurements.


[2] Instead, measurement errors have a “bell-shaped” distribution (often the “normal” error distribution described in more detail in a later topic).  This means that:

[a] small errors are more likely than large ones (so there is a peak centered on zero)

[b] errors several times the typical error are possible although unlikely, so the large-error “tails” of a measurement-error distribution approach zero gradually rather than stopping abruptly at a definite position as the uniform rounding-error distribution does.


[3] The typical measurement-error size for a process can be any of a continuous range of values, and thus very seldom will equal the half-unit that makes it easy to imply the rounding precision by how many digits are written.  If the measurement of 53.4 grams has a typical error of ±0.20 grams, then reporting the weight as 53.4 grams is too precise (since that implies that the real value is between 53.35 and 53.45 grams) while rounding to 53 grams throws away information (since that implies that the true value could be as low as 52.5 grams).  


Because of these differences, careful reports about measurements give a specific report about the expected error from noise, rather than just implying it by rounding off the measured value.  The most common form of this is the measurement ± noise format mentioned earlier.  
	Examples contrasting uniform and bell-shaped distributions
The numbers in bold are the number of cases corresponding to the result

	Uniform Distribution – errors when totals are rounded to the nearest dime

Rounding
Error

Cents values that result in the row’s rounding error

- 5 cents

10 cases: 5, 15, 25, 35, 45, 55, 65, 75, 85, and 95 cents

- 4 cents

10 cases: 6, 16, 26, 36, 46, 56, 66, 76, 86, and 96 cents

- 3 cents

10 cases: 7, 17, 27, 37, 47, 57, 67, 77, 87, 97 cents

- 2 cents

10 cases: 8, 18, 28, 38, 48, 58, 68, 78, 88, and 98 cents

- 1 
cent

10 cases: 9, 19, 29, 39, 49, 59, 69, 79, 89, and 99 cents

0 
cents

10 cases: 0, 10, 20, 30, 40, 50, 60, 70, 80, and 90 cents

+1 
cent

10 cases: 1, 11, 21, 31, 41, 51, 61, 71, 81, and 91 cents

+2 cents

10 cases: 2, 12, 22, 32, 42, 52, 62, 72, 82, and 92 cents

+3 cents

10 cases: 3, 13, 23, 33, 43, 53, 63, 73, 83, and 93 cents

+4 cents

10 cases: 4, 14, 24, 34, 44, 54, 64, 74, 84, and 94 cents


	Bell-shaped Distribution – the number of heads (or tails) expected when a coin is flipped six times.

Heads

 Cases giving the row’s head total

0

1 case: TTTTTT
1

6 cases: HTTTTT, THTTTT, TTHTTT, TTTHTT, TTTTHT, TTTTTH
2

15 cases: HHTTTT, HTHTTT, HTTHTT, HTTTHT, HTTTTH, THHTTT, THTHTT, THTTHT, THTTTH, TTHHTT, TTHTHT, TTHTTH, TTTHHT, TTTHTH, TTTTHH
3

20 cases: HHHTTT, HHTHTT, HHTTHT, HHTTTH, HTHHTT, HTHTHT, HTHTTH, HTTHHT, HTTHTH, HTTTHH, TTTHHH, TTHTHH, TTHHTH, TTHHHT, THTTHH, THTHTH, THTHHT, THHTTH, THHTHT, THHHTT
4

15 cases: TTHHHH, THTHHH, THHTHH, THHHTH, THHHHT, HTTHHH, HTHTHH, HTHHTH, HTHHHT, HHTTHH, HHTHTH, HHTHHT, HHHTTH, HHHTHT, HHHHTT
5

6 cases: THHHHH, HTHHHH, HHTHHH, HHHTHH, HHHHTH, HHHHHT
6

1 case: HHHHHH



Questions to consider about the bell-shaped distribution:  
[a] What is the most likely number of heads when a coin is flipped six times?

[b] What number of heads is least likely, but still is possible?

[c] What percentage of the time will the number of heads not equal the answer given in [a]?

[d] What description of these results would best communicate both the most likely value and the typical amount of variation around that value?
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Implications of these questions for reporting error situations:
[a] Most likely result: 

Bell-shaped: The list of possibilities shows that the most likely result is 3 heads (and thus 3 tails).  Having equal numbers of heads and tails is similar to having all the noise sources for a measurement add up to zero, leaving the measured value equal to the actual value.  This is more likely than any other particular combination of noise, since noise is equally likely to be positive or negative (just as the coin-flip was equally likely to result in a head or a tail).  


Uniform: As its name implies, in a uniform distribution such as that for rounding error, all results that are possible are equally likely.  There is no “peak” in a uniform distribution.

[b] Least likely result: 

Bell-shaped: There are two possibilities that are least likely: all heads or all tails.  For six flips, each will occur only 1 out of 64 cases, about 1.6% of the time.  The extreme cases become even less likely if the total comes from more random components.  If the coin is flipped 20 times, the all-heads and all-tails cases will each occur about 1 time in a million.  Since measurement noise results from the combination of many small effects, the largest noise values will be very rare compared to the typical ones.

Uniform: Again, all possibilities are equally likely.  A uniform distribution does not have “tails” that taper off toward zero on each side as values get further from the distribution’s center.

[c] Exactly matching the average: 

Bell-shaped: Even though an equal number of heads-up and tails-up cases is most likely, it is not more likely than all the other possibilities combined.  In the six-flip case about 31% of the cases have an equal number heads and tails, which means that 69% of the six-coin-flip results do not have the most-likely value of 3 heads.  For 10 flips, only 25% of the cases will have equal numbers of heads and tails (thus 75% will be unequal); for 20 flips, about 18% will be equal and 82% will be unequal.  Similarly, even though many US males have the 5’10” height that is now most common, even more people have some other height – this is why the statement “US males are 5’10” tall” would be misleading, even though 5’10” is the best number that could be used in that sentence.

[d] Best description in value ± noise form:

Uniform: This is the easy case.  Since all rounding errors are equally likely, the best description is the rounded value ± half the rounding interval (e.g., ±$0.05 for values rounded to the nearest dime.  In practice, if amount of rounding is obvious this information can be conveyed by stating just the rounded value.  But note that this half-interval is the maximum error, and that the typical error is somewhat less (about 58% of the half-interval value if standard deviation is chosen as the definition of typical error).

Bell-shaped: Using the rounding approach for this situation would lead to the dubious statement that the result expected for six coin flips is 3 ± 3 heads.  While there is a sense in which this statement is true, since it is possible for six flips to produce 6 heads or 0 heads, the statement is not very useful since it does not indicate what the typical deviation from the average will be.  In the six-flip case, the best short statement of the expected result is 3 ± 1 heads, since that includes about ¾ of the cases.  The contrast between typical and maximum deviations from the average becomes much greater as the number of random components increases, so that for most measurement processes the only workable way to report noise is by its typical value, which will be the standard deviation or a number derived from it. 

Section 4:  Estimating average and standard deviation statistics without a computer


While you will want to use a spreadsheet or other computer program for any substantial work with the average or standard deviation of measurement values, being able to directly make reasonable rough estimates of these statistics will help you detect errors in reports and decide how to approach analysis situations.

You can make a rough estimate of the average just by examining the list of values and picking one that is neither higher nor lower than most of the others.  Estimating the standard deviation σ is a little more subtle.  The rule of thumb to use is that on the average the absolute difference between one randomly-chosen measurement and another will be slightly larger than σ (usually from 10% to 15% more).  This means that any suggested standard deviation that is much smaller or much larger than the typical difference between measurements must be a mistake.


Another way to check a suggested standard deviation is to sort the measurement data in order of size.  Roughly 2/3 of the measurements should be within one standard deviation of the average.  At least one measurement must have a deviation that is greater than the standard deviation, and very few measure​ments (fewer than 1%) will have deviations from the average of more than 3×σ.  
	Example 5a.  For the measurement values shown to the right, which of these averages might reasonably be correct?  [a] 320.5   [b] 19.1 [c] 317.9   [d]319.2    [e] 318.9
Solution:  
   [a] 320.5 could not be the average because it is larger than any of the listed values.
   [b] 19.1 if far too low to be correct.  It may indicate a mistyping that dropped the first digit.

   [c] Even though there is one value slightly lower than 317.9, it is too low to be the average.

   [d] 319.2 is a plausible average, since several values are above and below it in size.
   [e] 318.9 is also a plausible average, since several values are above and below it in size.

Example 5b.  Which of these values might be the standard deviation of these measurements?

                            [a] 10.2     [b] 0.8     [c] 0.1     [c] 1.0    [c] 2.4
Solution:

   [a] 10.2 is much larger than the difference of the highest and lowest values, and thus cannot be the standard deviation of the measurement set.

   [b] Since most of the differences between values are between 0.5 and 1.5, 0.8 is a plausible value for the standard deviation.

   [c] 0.1 is too small to be the standard deviation of this measurement set, since almost all the differences between values are several times larger.
   [d] 1.0 is also a plausible value for the standard deviation, since most of the differences between values are between 0.5 and 1.5.

   [e] Even though one of the differences is greater than 2.4, it is well outside the plausible range between 0.5 and 1.5.
	318.8
318.2
319.9
319.5
319.7
318.9
317.6
320.2
318.4
319.4
320.0
318.6



Example 6:  Estimate the standard deviation of a measurement set from this sorted list of deviations derived from the measurement set in Example 5.  
Deviations: -1.5 -0.9 -0.7 -0.5 -0.3 -0.2 +0.3 +0.4 +0.6 +0.8 +0.9 +1.1

Solution:  Picking out the middle 2/3 of the noise values indicates that the standard deviation is approximately 0.8 for this data set.

-1.5 -0.9 -0.7 -0.5 -0.3 -0.2 +0.3 +0.4 +0.6 +0.8 +0.9 +1.1

Applying STDEV to the list of deviations shows that the exact value for σ is 0.80904 (which should be rounded to 0.81).  This is consistent with the estimate based on sorting as well as the two possibilities identified in Example 5b.
Example 7:  Which of the 8-valuet datasets whose graphs are shown below might correspond to a measurement dataset which has an average of 18 and a standard deviation of 3?
	[a]

[image: image4.emf]0 10 20 30


	[b]

[image: image5.emf]0 10 20 30


	[c]

[image: image6.emf]0 10 20 30




Solution:

[a] The values graphed here must have an average greater than 20 (probably about 24), so the corresponding dataset could not have the statistics stated in the question.

[b] This graph is consistent with a dataset average of 18.  Also, its typical distance between random values (not necessarily adjacent ones) is roughly 4, which would be consistent with σ = 3.  


[c] This graph is consistent with a dataset average of 18, but the distance between random values (not necessarily adjacent ones) is close to 10, which is too large to be consistent with σ = 3.  

Answer:  Only graph [b] is consistent with the stated statistics of 18 ± 3.
Section 5:  The mathematical formula for standard deviation


While you will never be called on to directly compute standard deviations by using the formula below, we will build a version of it into the modeling spreadsheets we will construct in later topics.

The standard deviation is computed by a special kind of average: add the squares of the individual noise deviations, divide by an integer based on the number of measurements used, then take the square root of that quotient.  Since a squared number is never negative, this avoids any cancellation between positive and negative deviations, and thus gives a useful numerical value for indicating the typical amount of noise.  

This is the mathematical formula for computing the standard deviation for a set of n measurement values (Measurement1 , Measurement2 , Measurement3 , Measurement4 , … Measurementn) whose mean value is Average:
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 expression that follows it should be evaluated for each data value, with all n of the results added together.  This formula therefore describes exactly the same computation process as the sentence in italics in the previous paragraph, and produces the same result as applying the STDEV function to the measurement set.  
The denomi​nator of the fraction is “n – 1” instead of the “n” used in most averages because the number of measure​ments must be reduced to allow for the fact that if you had only one measurement you would have no information about the variability of the measurement set.  When we compute standard deviations around model-function predictions (as we will do in later topics on modeling), the n in the denominator will be reduced by the number of adjustable parameters in the model (e.g., “n – 2” for a linear model, because linear formulas have two parameters: slope and intercept). 

Section 6:  Calibration of a measurement process


Noise can be detected and quantified simply by taking repeated measurements of the same object.  The noise level is indicated by the standard deviation of such a measurement set.  But it is possible for a measurement process to have low variability, but still be consistently wrong, as when a scale always reads two pounds above the true weight.  Such consistent measurement errors are known as bias.


The standard way of detecting and quantifying bias is to measure an object, called a calibration object, whose true size is known.  For high-precision work, the calibration objects used are directly or indirectly based on objects or devices provided by the United States National Bureau of Standards or a comparable international organization.

To compute bias, the true value for the calibration object is subtracted from its average measured value, with the difference being the bias value for that object size.  Thus a scale that always reads two pounds heavy has a bias of +2 pounds.  Once the bias is known, measurements of other objects of about the same size can be corrected by subtracting the bias from the measurement.  

Example 8:  A standard 5-pound calibration weight (accurate to 0.001 pounds) is weighed several times, giving these values:  5.128 pounds, 5.122 pounds, 5.125 pounds, 5.124 pounds, and 5.120 pounds.  Compute the bias of the measurement process being used.
Solution approach:

 [i] Find the average of the measurement values (by calculator or spreadsheet) as 5.124 pounds.

[ii] Thus the bias of this measurement process for a 5-pound weight is about +0.124 pounds.


The bias can be negative, as will happen when the measurements are consistently smaller than the true value.  In that case, you still correct the measurements by subtracting the bias, but remember that subtracting a minus number leads to an increased value.
Example 9:  A measurement process that has been found by calibration to have a consistent bias of –3.2 grams is used on several objects, giving the following uncorrected average results:  [a] 143.6 grams, [b] 86.4 grams, and [c] 96.9 grams.  State appropriate corrected measurements in each case. 
Solution approach: Subtract the –3.2-gram bias, thus increasing each of the values by 3.2 grams.

Answers:  [a] 146.8 grams,  [b] 89.6 grams,  [c] 100.1 grams.
Since the bias could be different for different object sizes, usually bias measurements are made for several sizes that span the range of measurement values of interest, often leading to a calibration formula that can be used to correct values of any size for bias.  We will examine such models, including the common case of linear calibration formulas, in later topics.
Calibration Drift


If a measurement device requires bias correction for accurate measurements, this usually reflects some change since the device was first made.  Thus it will often be the case that the bias of a system will change further over time, due to either temporary causes such as temperature change or long-term causes such as the wear or stretching of some of the parts.  This situation is called calibration drift.

Careful work may thus require calibration immediately before and after measurements to see that the bias has not changed and that a dependable bias correction can be done.  If the change in bias is due to gradual effects such as wear of a part, it may be possible to use occasional calibrations to make a correction model that is based on time, with each measurement corrected with an appropriate blend of earlier and later calibrations.


Making such models will be discussed in later topics.  But it is straightforward to check for the existence of calibration drift by taking a time series of repeated measurements on an object, recording both the measured value and the time at which the measurement is taken.  The graph of such a time series will be level if the calibration is stable, but will show a pattern (usually a tilt up or down) if the bias is drifting.  Because the changes are usually small (or the measurement device wouldn’t be worth using), it is often easier to see calibration drift by looking at the deviations from the average, where any significant drift will make the numerical values group into blocks of adjacent positive or negative deviations.  A graph of the deviations may also work better when looking for calibration drift, since they will always be expanded around the x-axis, which corresponds to the average measurement value.
	Example 10:  Examine this time-series data for signs of calibration drift.
Solution approach:
    [i] Copy the data to columns A and B of a spreadsheet, put the average value (327.1) into column C beside the data, then compute the deviations in column D by putting the formula “=B2-C2” into cell D2, then spreading it down beside the data, as shown below.

    [ii] Notice that most of the deviations for the first half of the days are negative, while most of those for the second half are positive.  This is symptomatic of a positive drift in the bias.
   [iii] The graph of the size values, shown below, is not informative if the y scale is set to include the x-axis, because the drift over the entire 20 days is less than 2% of the average measurement size.  (The graph shows more if autoscaling limits the y range.)
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   [iv] On the other hand, the graph to the right of the deviations from the average shows the drift more clearly, since the x-axis goes through the graphed points and the automatic scaling expands to show the changes well.  We can see that the measurement process is drifting toward higher bias, although the rate of drift is less than 0.1% per day.

	Time series

Day
Size
1

324.3

2

325.5

3

325.7

4

325.9

5

325.2

6

327.2

7

325.8

8

326.1

9

326.6

10

327.6

11

326.9

12

327.7

13

327.5

14

328.0

15

328.5

16

328.2

17

329.2

18

328.8

19

328.9

20

329.3




Section 7:  Graphing two-variable data

Outline of the procedure to be used in this class for graphing data by hand

[1] make a table of numerical values from the data 



[a] label the columns of the table with meaning and units of the tabulated values



[b] put input variable values (e.g., year) in the first column, to be used as x coordinates



[c] put output variable values (the results) in the second column, to be used as y coordinates


[2] choose x and y ranges that include all the data (okay to make the ranges larger for convenience)


[3] choose x and y scales so that all the plotted points fit into the space available for the graph



[a] the scale is how much one graphical step (one printed box) represents on the graph



[b] the x-scale and the y-scale will usually have different values and different units



[c] graphs of the same data will look different if different graphical scales and ranges are chosen


[4] label each axis with numbers indicating the range and scale chosen


[5] label each axis with the meaning and units for its variable (the same as used in the data table)


[6] plot the points from the table onto the graph


[7] sometimes it is appropriate to sketch the connection between the plotted points

      
[a] start with the point with the smallest x-value 



[b] make a line to the point with the next-smallest x-value.   

           
[c] continue until finished 


While the process of putting points onto a graph is relatively simple, there are several decisions to be made in producing a graph.  These decisions do not change the information in the graph, but they can make a difference in how easy it is for people to get the information you want from it.  Here are some examples of the different choices that could be made:

Example 11:  Different ways to graph the same data set


According to Worldwatch Institute’s 2002 report, the number of automobiles produced worldwide was approximately 23 million in 1970, 25 million in 1975, 29 million in 1980, 32 million in 1985, 36 million in 1990, 35 million in 1995, and 41 million in 2000.



It seems reasonable that we would want to predict the number of autos produced, so we choose that as the response variable and graph it on the vertical axis.  

	Year of production

	Autos produced (millions)


	1970

	23


	1975

	25


	1980

	29


	1985

	32


	1990

	36


	1995

	35


	2000

	41
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The graphs below use exactly the same data, but illustrate the advantages and disadvantages
of different choices of range and scale.  Consider these tradeoffs when making choices for your graphs.
	Graph 1 uses the easiest settings by making the horizontal and vertical ranges slightly wider than the values required to display all the data points.
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	Graph 2 has exactly the same drawing, but has relabeled the horizontal axis to reflect the time elapsed from the first data point rather than the actual year.  

When might this kind of transformation of the variable be helpful?
Answer:  If we’ll do much computing with the year values, these will be easier.
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	Graph 3 has a baseline of zero for the number of autos.

What advantages does a zero baseline have for this kind of data?   

Answer:  We see the steepness (or shallowness) of the increase in proportion related to an “understandable” baseline of zero.

What disadvantages? 

Answer:  The bottom half of the graph has no data, so it seems to be wasted space. Also, it makes the increase look rather shallow.
Can you think of a different kind of data for which there is no special advantage for a zero baseline?

Answer:  If the value of zero is not an obvious starting point, then there isn’t any particular reason to make it special on the graph. In Fahrenheit and Centigrade temperature data, zero degrees isn’t really a special starting point, because we have temperatures below zero, which represents different temperatures on the two scales.  
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	Graph 4 has the same vertical range as graph 3 (with its zero baseline) and the same vertical scale (number of graph squares per million autos) as graph 2.  

What advantages does graph 4 have compared to graph 2?   

Answer:  It includes the zero.

Disadvantages?

Answer:  It has a lot of “wasted space” in the bottom half of the graph.

What advantages does graph 4 have compared to graph 3?   

Answer:  The steepness of the increase is more clear in graph 4.

Disadvantages?
Answer:  It takes up more room on the page.
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Section 8: Graphing data with a spreadsheet program

Data can be graphed with a spreadsheet by using the Scatter Plot option from the Chart menu, and you will almost always benefit by making a graph of any dataset you wish to analyse.  Such a graph will suggest both the overall pattern of the relationship between the variables and the amount of noise in that relationship.

	Dataset A

	time
	position

	x
	y

	0

	13.70


	5

	24.73


	10

	35.64


	15

	46.35


	20

	56.81


	25

	67.05


	30

	77.14


	35

	87.20


	40

	97.34


	45

	107.67


	50

	118.24


	55

	129.04


	60

	140.02


	65

	151.07


	70

	162.06


	75

	172.89


	80

	183.49


	85

	193.85


	90

	204.01


	95

	214.07


	100

	224.16


	105

	234.37


	110

	244.80


	115

	255.47


	120

	266.36


	125

	277.38


	130

	288.42


	135

	299.35


	140

	310.09


	145

	320.58


	150

	330.85



	
	Dataset B

Hrs
Conc
x
y
0
906.85

1

848.62

2

752.43

3

674.64

4

615.71

5

585.85

6

484.72

7

484.43

8

412.87

9

382.07

10

317.03

11

320.12

12

285.99

13

236.28

14

229.87

15

211.84

16

183.75

17

152.57

18

141.35

19

146.39


	Datasets for Example 12
	Dataset E
Day
Dollars
x
y
0

29.62

5

38.22

16

42.18

20

41.61

27

53.00

38

58.98

54

68.96

66

82.13

80

86.66

90

97.55

114

111.16

125

111.12

131

114.05

149

129.92

162

142.78

190

159.36

216

175.69

261

215.25

267

215.69

293

222.52

300

233.86

313

242.68

322

248.81

339

259.93

346

264.84


	Dataset F

time
height
x
y
0

0.0

1

8.6

2

16.8

3

24.4

4

31.5

5

37.4

6

43.8

7

48.9

8

54.4

9

58.9

10

63.3

11

66.5

12

69.7

13

72.2

14

74.5

15

76.2

16

77.8

17

78.1

18

79.0

19

78.5

20

78.0

21

76.9

22

75.6

23

73.0

24

70.3

25

67.3

26

63.7

27

60.0

28

55.0


	Dataset G

time
temp
x
y
0

63.1

1

63.1

2

63.1

3

63.4

4

63.6

5

64.6

6

66.1

7

68.7

8

73.5

9

80.7

10

89.3

11

98.5

12

105.5

13

110.2

14

112.9

15

114.5

16

115.3

17

115.7

18

115.8

19

115.9

20

115.9



	
	
	Dataset C
Temp
Volts
x
y
-80

254.23

-75

284.91

-70

222.17

-65

274.92

-60

235.18

-55

231.89

-50

201.87

-45

227.49
-40

194.59

-35

199.91

-30

153.00
-25

216.28

-20

153.61

-15

180.74

-10

147.30
-5

175.06

0

150.35

5

111.92

10

169.15

15

95.99

20
141.59

25
105.18

30
98.56


	Dataset D

Minute
Liters
x
y
1200

683.80

1210

681.01

1220

685.63

1230

681.55

1240

678.97

1250

668.40

1260

663.14

1270

685.83

1280

666.71

1290

654.65

1300

668.23

1310

667.32

1320

677.72

1330

658.25

1340

640.79

1350

659.11

1360

637.97

1370

640.96

1380

655.38

1390

657.83


	
	
	


Example 12 – Graphing sample datasets with a spreadsheet program
[1] Copy each of the datasets above into a new worksheet by following these steps:

[a] Open the document containing this lesson on the course website.
[b] Start the spreadsheet program, or use the Insert menu to add a new worksheet.

[c] Select the data you wish to graph.  Usually it will be helpful to include the column headings.
[d} Save a copy of the selected data on the clipboard by pressing Ctrl-C (or with the Edit menu).

[e] Select the cell in the new worksheet that you wish to be the top left corner of the data table.

[f] Paste the data into the worksheet by pressing Ctrl-V (or with the Edit menu).

[2] For each worksheet, select the data you intend to graph, then use the Chart option in the Insert menu (or the chart symbol on the toolbar) to make a scatter plot of the data.  The left column will be used for the horizontal x coordinates of points on the graph, and other selected columns will be used for y coordinates.  So for a two-column dataset there will be a point on the graph for each row of data.
THINGS TO NOTICE:

[A] The scatter plot of data can indicate patterns in the way the variables are related.  Which of these datasets have patterns that are close to a straight line?  Which are obviously nonlinear?  Can you distinguish which datasets are linear just by examining the numerical values, without a graph? 
[B] The data usually has random “noise” deviations above and below the pattern.  In a later topic, we will find how fitting a model to data lets us compute a numerical value for how much noise it has.  It is possible for datasets to have a linear relationship between the variables even if there is also a lot of noise in that relationship.  Which of these datasets seems the noisiest to you?
[C] The spreadsheet will automatically decide on which range and scale to use for the display.  This makes it harder to estimate the amount of noise in the data, or its slope.  Look at the numbers on the axes to see what range and scale are used.  Spreadsheet programs generally make it possible to set the range and/or scale to specific values, and you may wish to do this if you are going to compare different graphs.  The example below illustrates the potential effect of different settings.
An example of the effects of range and scale settings:  The automatically-generated graph of dataset D (left graph below) looks very noisy, but this is somewhat deceptive.  For this dataset, there isn’t much change in y value across the graph.  Because the vertical scale automatically used for the graph is limited to the data range when all y values are far from zero, the automatic graph emphasizes the variations.  If the vertical scale is set to start at zero (middle graph below), it becomes clear that this data has a linear pattern with only minor amounts of noise.  Setting the horizontal range so that it starts at zero (right graph below) shows how small a portion of the potential range this dataset covers. 
	All three graphs have the same data (Dataset D).

Differences in appearance come from differences in the horizontal and vertical scales used.
	[image: image16.emf]630

640

650

660

670

680

690

1200 1300 1400


	[image: image17.emf]0

100

200

300

400

500

600

700

800

1200 1300 1400


	[image: image18.emf]0

100

200

300

400

500

600

700

800

0 500 1000 1500




Section 9:  Deciding which variable to use for y
When two-variable data is graphed, a decision must be made about which variable to use as x and which to use as y.  This makes little difference to the graphing process, and the same information is in both graphs, but the choice of axis will matter if you intend to connect the graph to a mathematical model formula, since the custom in mathematics is for y to be computed from a formula based on x values.
Which variables are used as x and y depends on what you plan to do with the data, not on what the data is.  For example, you may sometimes want to predict how long a spring will stretch for a particu​lar object weight, while at other times you may want to predict how much weight is needed to stretch the same spring to a particular length.  In each case you should assign y to the variable you want to predict.

The variable used for y is often called the “response variable” or the “dependent variable”, in which cases the variable used for x will be called the “explanatory variable” or “independent variable”, respectively.  However, it is also common for the variables to be called simply the “x variable” and “y variable” or the “input variable” and the “output variable” — the label used does not matter as much as understanding that when variables are used in modeling, values of the x variable will be used to predict values of the y variable.  

Avoid assuming that the value of the x variable is the cause of the corresponding value for the y variable, even though this is true in some cases and may be true for a mathematical model formula.  But often an effect is used to predict (i.e., deduce) a cause, as when we measure temperature by seeing how high the liquid has risen in a thermometer.  And in many relationships, the x and y variables are both effects of some other cause (e.g., a dataset relating how fast crickets chirp to how fast a block of ice melts, where both effects are caused by the air temperature – neither is causing the other).
Spreadsheets automatically use the leftmost column of data as the x variable in scatter plots, so you may need to rearrange the columns (by moving the data to leave room on the left, then copying the data column to be used as x into the empty space) to get them into a format whose scatter plot will reflect the orientation you want.
	Example 13: Graph the two-variable dataset shown to the right in both orientations
	Age

Pounds

3

29

6

47

9

68

12

93

15

126

18

143

21

155

24

158

27

162

30

165

33

163

36

166
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Note that this data would enable you to make reasonable predictions in answer to some questions, such as “What was this person’s weight at age 20?” or “How old was this person when they weighed 75 pounds?”, but also shows that there is not a simple numerical answer to the question “How old was this person when they weighed 164 pounds?”.  It is often true that it will be easier to use a dataset to make predictions in one direction than in the other direction, especially when noise is present.


Each of these graphs is the inverse of the other.  The pattern of the data is the same, although the horizontal and vertical scales may vary to fit the data into the allocated rectangle.  If data is graphed on a transparent sheet, you can convert the graph to its inverse by flipping the sheet over and then rotating the sheet 90 degrees clockwise.  Repeating this process will put the graph back into its original position.
EXERCISES
Part I – Reproduce the results in Examples 1 – 13.

Part II – Work each assigned problem.  Put any datasets needed into your spreadsheet by copying them from the table below in the textbook posted on the web site, rather than by typing them in.

	[14] Make a hand-drawn dot plot of the measurements in Dataset 1.

[15] Make a hand-drawn dot plot of the measurements in Dataset 2.

ANSWER:

[image: image21.emf]-7 -6 -5 -4


[16] Make a hand-drawn dot plot of the measurements in Dataset 3.

[17] Report the average and standard deviation for the measurement values in Dataset 1 and Dataset 2.

ANSWERS: 249.6 ± 5.6; -53.26 ± 0.23
[18] Report the average and standard deviation for the measurement values in Dataset 3 and Dataset 4.
	Dataset 1

251.7

253.3

240.0

252.1

246.4

244.6

250.1

252.1

259.9

245.8

Dataset 2

-5.71

-5.33

-4.93

-5.43

-5.41

-5.04

-5.11

-5.20

-5.14

-5.26

Dataset 3

1306

1280

1248

1304

1329

1290

1337

1301

1244

1253

Dataset 4

0.5361

0.5518

0.5363

0.5085

0.5271

0.5225

0.5041

0.5367

0.5308

0.5431




[19] Give appropriately rounded summary reports based on the information given in each of these cases:

[a] average = 63.5924, σ = 0.4824      [b] average = 0.046236, σ = 0.00278 

ANSWERS: [a] 63.6 ± 4.8  [b] 0.0462 ± 0.0028
[20] Give appropriately rounded summary reports based on the information given in each of these cases:

[a] average = −82.673, σ = 2.69832      [b] average = 5.43879, σ = 0.092742  
	Dot Plot 1
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	Dot Plot 2
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	Dot Plot 3
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	Dot Plot 4
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[21] For Dot Plot 1, which of the values below is a reasonable estimate for the average?


[a] 5
[b] 8
[c] 10
[d] 12
[e] 15         ANSWER: [c]
 [22] For Dot Plot 2, which of the values below is a reasonable estimate for the average?


[a] 15
[b] 20
[c] 24
[d] 25
[e] 28
[23] For Dot Plot 1, which of the values below is a reasonable estimate for the standard deviation?


[a] 2
[b] 5
[c] 1
[d] 0.5     [e] 10      ANSWER: [a]
[24] For Dot Plot 2, which of the values below is a reasonable estimate for the standard deviation?


[a] 1
[b] 2
[c] 5
[d] 15
[e] 25
[25] Which of the numbered dot plots is consistent with a summary report of 9.7 ± 2.1?   

ANSWER: Dot plot 1 (plot 4 has right average but wrong std dev)
[26] Which of the numbered dot plots is consistent with a summary report of 24.5 ± 2.1?

	[27] If Dataset 5 is a calibration series for an object whose true value is 15 pounds


[a] state the bias of the measurement system.


[b] state a corrected value for an object whose measurement was 16.231 pounds.


[c] report the corrected value rounded as appropriate for the measurement noise.

ANSWERS: [a] +0.59079 pounds [b] 15.64021 pounds [c] 15.64 pounds
[28] If Dataset 6 is a calibration series for an object whose true value is 250 grams


[a] state the bias of the measurement system.


[b] state a corrected value for an object whose measurement was 234.5 grams.

[c] report the corrected value rounded as appropriate for the measurement noise.
	Set 5
15.645

15.540

15.449

15.439

15.703

15.887

15.480

15.639

15.384

15.768

15.374

15.328

15.856

15.779


	Set 6
245.66

247.53

246.09

248.85

245.32

247.18

242.29

248.43

245.05

247.05

244.21

242.67

244.79

246.04




	Dataset 7

Distance

Fuel level

0

11.52

10

11.08

20

10.31

30

10.61

40

9.97

50

9.46

60

8.58

70

8.42

80

7.74

90

8.07

100

7.02

110

6.62

120

6.03

130

5.97

140

5.46

150

4.52

160

4.27

170

3.90

180

3.27

190

2.62

200

2.6


	Dataset 8

Speed

Mileage

10

15.1

20

26.2

30

30.3

40

34.3

50

35.3

60

33.9

70

30.5

80

26.5

90

21.2


	Dataset 9

Minutes

Temperature

0

136.4

1

128.5

2

121.8

3

116.3

4

111.4

5

106.7

6

102.4

7

99.3

8

96.4

9

93.7

10

91.3

11

89.3

12

87.2

13

85.4

14

84.3

15

82.8

16

82.5

17

81.3

18

80.6

19

79.6

20

79.5


	Dataset 10

Year

Thickness

1990

63.8

1991

65.2

1992

66.7

1993

68.0

1994

69.3

1995

70.8

1996

71.8

1997

73.3

1998

75.0

1999

75.8

2000

76.6

2001

78.0

2002

79.8

2003

80.7

2004

82.3

2005

83.3

2006

84.3




[29] Graph Datasets 7 and 8.  Does either graph approximate a straight line?  ANSWER: Graph 7 
[30] Graph Datasets 9 and 10.  Does either graph approximate a straight line?

[31] Make the inverse graph for Dataset 7.  Could fuel level be used to estimate distance traveled?  Why?
ANSWER: Yes, because the inverse graph is also a straight line.
[32] Make the inverse graph for Dataset 8.  Could gas mileage be used to estimate vehicle speed?  Why?
	[33] Is a significant calibration drift indicated by the Dataset 11 time series?  If so, estimate the drift rate.
ANSWER: Yes, there is a drift of about 0.004 per hour.
[34] Is a significant calibration drift indicated by the Dataset 12 time series?  If so, estimate the drift rate.

	Dataset 11

Hour

Thickness

0

3.021

1

3.008

2

2.998

3

3.009

4

3.023

5

3.027

6

3.028

7

3.017

8

3.031

9

3.042

10

3.028

11

3.053

12

3.043

13

3.056

14

3.050

15

3.048

16

3.073

17

3.074

18

3.088

19

3.087

20

3.077

21

3.080

22

3.094

23

3.107

24

3.086


	Dataset 12

Day

Weight

0

646.7

1

646.2

2

646.9

3

646.9

4

645.4

5

648.4

6

647.2

7

645.9

8

647.9

9

648.4

10

647.0

11

647.4

12

646.4

13

648.3

14

645.3

15

646.7

16

646.4

17

648.6

18

648.0

19

647.3

20

646.6




.
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Avg�
Dev�
�
2�
1�
324.3�
327.1�
-2.8�
�
3�
2�
325.5�
327.1�
-1.6�
�
4�
3�
325.7�
327.1�
-1.4�
�
5�
4�
325.9�
327.1�
-1.2�
�
6�
5�
325.2�
327.1�
-1.9�
�
7�
6�
327.2�
327.1�
0.1�
�
8�
7�
325.8�
327.1�
-1.3�
�
9�
8�
326.1�
327.1�
-1.0�
�
10�
9�
326.6�
327.1�
-0.5�
�
11�
10�
327.6�
327.1�
0.5�
�
12�
11�
326.9�
327.1�
-0.2�
�
13�
12�
327.7�
327.1�
0.6�
�
14�
13�
327.5�
327.1�
0.4�
�
15�
14�
328.0�
327.1�
0.9�
�
16�
15�
328.5�
327.1�
1.4�
�
17�
16�
328.2�
327.1�
1.1�
�
18�
17�
329.2�
327.1�
2.1�
�
19�
18�
328.8�
327.1�
1.7�
�
20�
19�
328.9�
327.1�
1.8�
�
21�
20�
329.3�
327.1�
2.2�
�
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Years since 1970
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