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Topic K – Linear and Quadratic Models
Objectives:

1. Recognize when a dataset shows a relationship between the variables that is approximately linear.

2. Use a spreadsheet to adjust the intercept and slope parameters of a linear formula so that the graph of corresponding points on the resulting line are close to the points graphed from a data set.

3. Use linear formula that best fits the data as a model for the data, predicting the output y value for any specified input x value.

4. Recognize when a dataset shows a relationship between the variables that is approximately quadratic.

5. Use a spreadsheet to adjust the location and scale parameters of a quadratic formula so that the graph of corresponding points on the resulting parabola are close to the points graphed from a data set.

6. Use the quadratic formula that best fits the data as a model for the data, predicting the output y value for any specified input x value.

7. Distinguish between appropriate and inappropriate extrapolation of a model.

Overview

In previous topics we have dealt with numbers produced from formulas, and separately with datasets showing the relationships between two variables.  Now we are going to combine these perspectives and find formulas that approximately match the relationship between variables.  Such formulas are models of the measurement data, and their graph will pass close to the data points.
The model formula is used to predict output values.  In this topic we will examine models that are linear (that is, their graphs are straight lines), as well as one kind of non-linear model.
The models will not match the data exactly.  There will always be some noise due to unavoidable random errors in the data-measurement process.  Also, sometimes the actual pattern underlying the data will not match the model’s formula (e.g., if the data has a curved graph and the model is a straight line).  In that case even the best linear model will have to go above the data in some areas and below it in others.  
Just as we computed deviations from the average when we analyzed the noise in repeated measurements, we will compute deviations from the model when we are trying to decide how well a particular model fits a dataset.  A standard deviation based on these deviation values will be a numerical measure of how good the model is.  We can also at the deviations to see if the model is too simple, since in an over-simple model most adjacent deviation values will have the same sign, positive or negative (in the correct model, the data will be randomly above or below the model values).
The data variable you want your model to predict should be used for the output y values in the dataset.  Thus the other variable should be used for the input x values.  Occasionally it is reasonable to also make use of the inverse model, where the role of the data variables is reversed and the second variable is used to predict the first one.  If a model is linear, the inverse model for that data is also linear.
Note that which data variable is modeled as output can be different for people with different goals.  One person might want to use temperature measurements to predict how long a metal bar will be, while someone else might to use the measured length of the bar to estimate what the temperature is.  Both people could use the same set of calibration data, but would assign different x and y roles to the data variables when they make their predictive models.
In this topic we will focus on two simple models (linear and quadratic formulas), but the techniques shown will work in almost exactly the same way for fitting any kind of mathematical model to data.  Some other useful models will be discussed in later topics.
Section 1: Graphing data and model together

In order to find a good model for a dataset, we need to be able to compare the actual data values with the predictions of the model.  This can be done by applying the model formula to each of the x values in Column A to compute “model y” values that are placed in Column C next to the corresponding “data y” value in Column B.  Then a scatter plot that is made with all three columns selected will show both the data and the model predictions, in different colors.  For a good model, the two kinds of points will be close to each other, although the data points will usually also include some random noise. 
Example 1 – Adding a model to a dataset and setting up a comparison graph
	Input

	Output


	x

	data y

	0

	6.6


	1

	9.3


	2

	9.2


	3

	11.5


	4

	12.9


	5

	15.2


	6

	14.4


	7

	17.5


	8

	19.3


	9

	19.8



	
	      The dataset to the left has a relationship between x and y that is approximated by the linear formula y = 1.4 x + 7.3.  This formula can be used to compute model y values for each of the rows of the dataset, which we will put into column C next to the corresponding output data y value so that we can easily compare them.
1. Insert a new worksheet into a spreadsheet.

2. Copy the dataset so that the x and y values go into columns A and B, with the numbers starting in row 3.  (That is, cell A3 will be 0 and B3 will be 7.41)
3. Put the labels “Model” into cell C1 and “model y” into cell C2.

4. Put the formula “=1.4*A3+7.3” into cell C3. (The result for C3 should be 7.3)

5. Spread the formula in C3 down column C to C12, next to all the data values in column B.  (The results should be 8.7 for C4, 10.1 for C5, 11.5 for C6, etc.)
6. Select the rectangle from A2 to C12, and make a scatter plot.


When you have followed the steps listed above, you should have results that look about like this:
	
	A
	B
	C
	D
	E
	F
	G
	H
	I

	1
	Input
	Output 
	Prediction 
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	2
	x
	data y
	model y
	
	
	
	
	
	

	3
	0
	6.6
	7.3
	
	
	
	
	
	

	4
	1
	9.3
	8.7
	
	
	
	
	
	

	5
	2
	9.2
	10.1
	
	
	
	
	
	

	6
	3
	11.5
	11.5
	
	
	
	
	
	

	7
	4
	12.9
	12.9
	
	
	
	
	
	

	8
	5
	15.2
	14.3
	
	
	
	
	
	

	9
	6
	14.4
	15.7
	
	
	
	
	
	

	10
	7
	17.5
	17.1
	
	
	
	
	
	

	11
	8
	19.3
	18.5
	
	
	
	
	
	

	12
	9
	19.8
	19.9
	
	
	
	
	
	

	13
	
	
	
	
	
	
	
	
	


The graph above shows that y = 1.4 x + 7.3 is a good model for this dataset, since the data points  are close to the model points over the entire range of data, and the differences are randomly above and below the model.
But how did we know that the right model was y = 1.4 x + 7.3?  

Good question.  The example above shows how to recognize when a formula makes a good model, but does not show how to find a good model formula.  What we really want is a method that will permit us to take any dataset that seems linear and quickly find what particular values for the slope and intercept parameters will make a linear formula that is a good model for that dataset (or a similar process for an appropriate nonlinear formula if the data pattern is not close to a straight line).  The next section introduces a tool that provides an easy way to find the right parameter settings in a model formula.
Section 2:  Using a spreadsheet model to predict values


The benefit for having a good model formula for a relationship is that you can predict what output value should be expected for any input value, even if you have no data with that input value.  This can be done simply by computing what y value the model evaluates to when the input value is used as the x value.  For example, the model from the previous section predicts an output 21.3 for an input value of 10, because when 10 is substituted for x, the formula y = 1.4 x + 7.3 becomes y = 1.4×10 + 7.3 = 21.3.  

Predictions are particularly easy to produce from a model if you already have the model formula entered into a worksheet similar to the one you made in the previous section.  Whenever you enter a new x value into the cell in column A that is immediately below the last data value (such as A13), the spread​sheet automatically extends the formula in column C to that same row, showing the model’s prediction for the new input value.  (This process can be repeated for additional input values as needed.  If your spreadsheet program does not automatically extend column C, you can spread the formula down by hand to get the same effect.)

Example 2:  Using the worksheet from Section 1, predict the output (rounded to one decimal place) for these input values:  [a] x = 10   [b] x = 7.5   [c] x = -3   [d] x = 2.83   [e] x = 539   [f] x = -205
Answers:     [a] y = 21.3    [b] y = 17.8    [c] y = 3.1     [d] y = 11.3     [e] y = 761.9    [f] y = -279.7
When adding values to columns A and C, what should be done to column B?


This is a natural question, since the empty cells (such as B13 and below) seem to leave a gap in the pattern of the worksheet.  But don’t add to column B when predicting with the model.  You can make as many predictions with the model as you wish, but you mustn’t make up data.  Leave column B blank except for the data values that you are given to start with.
How reliable will the predictions of a model that closely matches the data be?
Notice that a model formula can be used both for interpolation for x values within the range of the data (such as in [b] and [d] above) and for extrapolation, in which the predicted point is for an x value that is outside the data range (such as in [a], [c], [e], and [f] above).  Interpolation is generally dependable, although the noise in the relationship will usually keep it from exactly predicting future measurements.  Extrapolation is less reliable, especially when the prediction being made is for a point that is very far away from the data on which the model is based.  This is discussed in more detail in a later section.
Example of erroneous extrapolation:  For a given child, one can record the child’s height and age in years.  During the elementary-school years, that is a fairly linear relationship, with a growth rate of about 3 to 4 inches per year.  But you would get very erroneous results if you use that model to estimate the typical height of 30-year-olds (who would be about 10 feet tall if the youthful pattern continued).
Section 3: Using the Models.xls spreadsheet to find a linear model


The Models.xls spreadsheet available on the class web site is a template into which you can put any data values, then fit a mathematical model to closely match that data.  It has all the needed formulas preset, including a formula in C3 that is based on the kind of model that is wanted (e.g., linear or quadratic).  You will use this or similar spreadsheets as your main tool in this topic and later modeling topics, so it will save you a lot of time if you become skilled at using it.  


Models.xls has multiple sheets, each of them preset to fit a particular type of model.  In this section we will use the “Linear Model” sheet.  Worksheets for Quadratic and Exponential are also included in Models.xls, and will be discussed in later sections and topics.  You will find that there is very little difference in the process used for finding different models, so when you learn to use the Linear Model worksheet you will be able to quickly make use of any other model formula that turns out to be appropriate for the dataset you are fitting.
Steps for using the Models.xls spreadsheet to find a good linear model for a dataset:
1. Insert a new worksheet with the Insert > Worksheet menu choice, and label the tab at the bottom of this new sheet with an appropriate name (e.g., “Linear Model for Sediment Model”).  

2. Copy the contents of the worksheet labeled Linear Model (select it and then use a Ctrl-A, Ctrl-C, Ctrl-V sequence to paste a copy of its contents into the worksheet you inserted in step 1).  (It will not work to use the Linear Model worksheet directly or to use the Edit > Move or Copy Sheet menu option, because the model-template worksheets are protected from change so that they are always available.)
3. Look at your data and decide which column you want your model to predict.  That column of the data will be labeled as y values and compared to the output of the model.  The other column will be labeled as x values, and will be used in the model formula to compute the model output.  If you need to rearrange the columns to make the inverse graph or otherwise modify the dataset, use the Data Scratch Pad worksheet in Models.xls to get the data ready for step 4.
4. Place the data into columns A and B, starting the numbers at row 3 (you can put column labels in row 1 if you wish).  Use column A for the input x data values and column B for the output y data values.  Use as many rows as needed for the data; this may be different for different data sets.
5. Spread the formula in cell C3 down to as many rows as the data.  (In the Linear Model sheet, C3 has been preset to “=$G$4*A3+$G$3”, a linear formula that uses the value in cell G4 as slope and the value in cell G3 as intercept.)

6. Spread the formulas in cell D3 and E3 down beside the data and model rows.  The formula “=B3-C3” in D3 computes the difference between the data and the model (called the residual deviation), and the formula in E3 computes the square of that deviation.  These column E values are used to compute (in G13) a numerical average of how well the model fits the data, which is called the standard deviation.
7. Make a graph of the data and model together.  Select the data rows in columns A, B, and C, then select the Scatter Plot option from the Chart menu.  The data and model points will be different colors, with one of each kind at each horizontal position.
8. Adjust the “parameter” values at the top of column G to move the model close to the data.  Each type of model has different parameters (e.g., intercept and slope for linear models), but a similar process of adjustment can used in all cases.
9. Decide if the model used is appropriate for the dataset.  A good model will come close over the whole range of input values, with deviations due mainly to noise in the data.  If the best parameter settings cannot produce a good model (e.g., a line model fitted to parabolic data), then that model should not be used for predictions.  A different model (e.g., a quadratic one) should be tried.
10. Write the mathematical formula for this set of model parameters (e.g., y = 1.4 x + 7.3).
	Example 3:  Using Models.xls to fit a linear model to a dataset
      The table to the right gives data on the measured rate at which sediment built up in a factory hold​ing tank during routine opera​tion, after a cleaning process that is repeated a couple of times per year.  The factory operators want to use this informa-tion to make a formula to predict sediment depth at any chosen time after a cleaning.
       A preliminary graph of the data shows that the pattern of the points is reasonably close to a straight line.  Therefore, the “Linear Model” worksheet in Modlels.xls is the appropriate one to use.
	Days 
since
 cleaning

Depth 
(mm)

10

  29.9

20

  48.0

30

  60.5

40

  88.6

50

102.9

60

114.1

70

141.1

80

149.5




Solution:


In an earlier topic, you used a spreadsheet to adjust the intercept and slope of a linear equation and saw the resulting changes in the position of the straight-line graph.  We will now use that same technique to make a good linear model for this data with Models.xls. 
[1] Insert a new worksheet into Models.xls, labeling its tab “Linear Sediment Model”.  Then copy into the new worksheet the contents of the read-only worksheet labeled “Linear Model Template”.
[2] In this case we want to predict sediment depth for any given number of days since the last cleaning.  This means that we want to use day as the input variable x and depth as the output variable y.  
[3] Copy the data to the spreadsheet (columns A and B, rows 3 to 10 for the numbers), then label the top of the data columns with “Days” in A2 and “Depth” in B2.
[4] Select C3 (which contains a preset linear formula based on the values in G3 and G4) and spread the formula down to row 10, matching the data.  At first, these model values will be zeros.
[5] Also select and spread D3 and E3 down to row 10.  The values in columns D and E will not be very meaningful until you adjust the model to be a good fit.

[6] Make a scatter plot of the data and model columns together (that is, the rectangle A1:C10).  At first, the model points will lie on a horizontal line along the x-axis.
[7] Adjust the parameters in G3 and G4 so that the model points are as close as you can get them to the data points.  

For a linear model, here is a good parameter-adjustment strategy:


[a] Set the intercept to approximately where the data trend crosses the y axis (about 10 in this case, although you do not need to be exactly right since you will adjust the intercept again in [c] below), 


[b] Adjust the slope to make the model line parallel to the data trend (in this case, 1 is too low a value for the slope, and 2 is too high; 1.8 seems about right).

[c] Now adjust the intercept to its best value, moving the model line without changing its slope until the model goes right through the data (in this case, a value of 11 for the intercept works well).



[8] Check to see if the model is good.  In this case, the model points are close to the data points over the whole data range, showing that a linear model is the correct type to use for this data.



[9] Write the mathematical formula for the model you have found:  y = 1.8 x + 11
The Linear Sediment Model worksheet should look about like this at the end of this solution process:
	
	A
	B
	C
	D
	E
	F
	     G

	1
	x
	y data
	y model
	Data-Model
	
	
	Linear model: y = m * x + b

	2
	Days
	Depth 
	Prediction
	deviation
	
	
	y = 1.8x+11

	3
	10
	29.9
	29
	0.9
	
	
	11
	 b: Intercept

	4
	20
	48.0
	47
	1
	
	
	1.8
	 m: Slope

	5
	30
	60.5
	65
	-4.5
	
	
	
	

	6
	40
	88.6
	83
	5.6
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	7
	50
	102.9
	101
	1.9
	
	
	

	8
	60
	114.1
	119
	-4.9
	
	
	
	

	9
	70
	141.1
	137
	4.1
	
	
	
	

	10
	80
	149.5
	155
	-5.5
	
	
	
	

	11
	
	
	
	
	
	
	

	12
	
	
	
	
	
	
	
	

	13
	
	
	
	
	
	
	
	


Section 3:  Adjusting the input variables to simplify the intercept parameter of linear models 

For the sediment data, both parameters for the model have natural meanings: the slope is the daily rate of sediment build-up, and the intercept is the sediment level immediately after cleaning.  This is because the zero point of the input parameter, days since cleaning, has a meaning that is naturally related to the situation – zero corresponds to the date the cleaning took place.


However, sometimes the zero point for an input parameter is artificial, and has no natural relationship to the situation.  When this is true, the intercept of a linear model for that data will not have a useful meaning.  If the input parameter for a dataset of a company’s annual sales is the calendar year, for example, then the intercept of a linear model fit to that data will be the model’s “prediction” for the year 0, over 2000 years ago.  This will probably be a very high or very low number that would be almost impossible to find just by making guesses to adjust the intercept parameter of the model.  Even if found, the resulting model formula would be difficult to use because of the very large value it contains. 

There are a couple of ways to avoid this problem.  The one shown below, changing the input variable from “Year” to “Years since 1990”, is the same technique you used in an earlier topic on graphing.  When the input is redefined in this way, it becomes as simple to find the model as it was for the sediment data.  In a later topic we will show how to adjust the model itself to give the same effect.
	Example 4: Find a good linear model for this data, redefining the input parameter as needed, and use the model to predict sales in 2010.

Solution:  

     [i] Redefine the input parameter to “Years since 1990”, since that will cause the beginning of the data to have an input parameter of zero.  To do this, copy the data from the table to a scratch-pad worksheet, make a column containing the Year data with 1990 subtracted, and copy the modified table to a copy of the linear model template.

    [ii] Since the first row now has a zero input variable, use the Sales figure for that row, 453, as the initial setting for the model intercept parameter in cell G3.

   [iii] Adjust the slope parameter in cell G4 until the model points are parallel to the trend of the data.  A slope value of 26 is about right, but other nearby values would also be okay if the line looks correct.
   [iv] Readjust the intercept value to ensure that the model goes through the middle of the data.  Increasing it to 460 improves the fit (but again, a nearby value is okay if the graph shows a good fit).

   [v] The implied linear model is y = 26 x + 460.
  [vi] Thus the prediction of the model for sales in 2010 (20 years after 1990) is 980.
	Year

House

Sales

1990

426

1991

517

1992

500

1993

558

1994

611

1995

558

1996

601

1997

596

1998

683

1999

693

2000

708

2001

761

2002

771

2003

831

2004

897

2005

822

2006

889





To see what trouble was avoided by redefining the input variable, use this model to “predict” sales in the year 0, which of course is 1990 years before 1990.  Since 26∙(−1990) + 460 = −51,280, the corresponding sales model for the unmodified input values would be y = 26 x − 51,280, whose intercept value would be very difficult to guess.


An alternate way of dealing with this same problem is to modify the model formula itself, substituting (x − 1900) for x.  If this were done, then the same model would be y = 26∙(x −1990) + 460.  This approach has the advantage of not requiring a change in the data, which means that the horizontal scale on the graph would show the year number.  On the other hand, the model would have a more complicated formula.  Both techniques are used.  We will examine this and other ways of modifying the model formula in a later topic.
Section 4:  Using Models.xls to find a quadratic model

	
If we wish to find a model for the data on the right, this quick scatter plot of the data shows that a straight line will not be sufficient. Such parabolic shapes (similar to the path of a thrown ball) is instead represented mathematically by a quadratic formula, in which the term that contains the input variable x is squared.
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There are several ways to write a quadratic formula, all of which can make the same curves.  For use in fitting data, the best kind of quadratic formula is y = a (x – h) 2 + v, where the parameters h and v are the x and y coordinates of the vertex of the parabola (that is, its highest or lowest point), and a is a “shape” parameter that determines how sharply (and in which direction) the parabola bends.
The quadratic formula pattern that is most convenient for fitting models:  
[image: image2.wmf]2
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a is a “shape” parameter controlling how much (and in which direction) the parabola bends

h is the x coordinate of the vertex (its horizontal distance from the origin)

v is the y coordinate of the vertex (its vertical distance from the origin)

Examples:  
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	time
height
x
y
0

0.0

1

8.6

2

16.8

3

24.4

4

31.5

5

37.4

6

43.8

7

48.9

8

54.4

9

58.9

10

63.3

11

66.5

12

69.7

13

72.2

14

74.5

15

76.2

16

77.8

17

78.1

18

79.0

19

78.5

20

78.0

21

76.9

22

75.6

23

73.0

24

70.3

25

67.3

26

63.7

27

60.0

28

55.0




	Examples of graphs of various quadratic formulas
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Example 5: For each of the formulas above, state the location of the vertex of the parabola formed.
Solution:  Since the vertex is at (h,v) when a formula is expressed in the 
[image: image14.wmf]2
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 form,       the coordinates for the vertices are:  (2, 8)  (2.5, −50)  (−3, −158)  (−7, −300)
Note that the sign of the x vertex coordinate is the opposite of the sign that the same number has in the formula, since the h value is subtracted when forming the formula.
Quadratic models are somewhat more complicated than linear ones, as is indicated by the fact that a quadratic model has three parameters instead of two.  But there is really very little difference in the fitting process from what is done for straight lines: [1] put the data in the appropriate worksheet, [2] spread the C3:E3 formulas down beside the data, [3] make a graph and adjust the vertex (instead of the intercept) and the shape (instead of the slope) until the model and the data match, and [5] write down the formula or use it to predict any values you have been asked for.

Example 6: Fitting a quadratic model 
	The height of a basketball above the floor is measured at 0.1-second intervals from when it leaves the player’s hand until it reaches the basket, with the results shown to the right.  

[a] Find a quadratic model whose height predictions closely match this data.

[b] How long after the shot begins does the ball reach the highest point in its path?

[c] How high is the basketball above the floor at the highest point in its path?

[d] How high was the basketball at 0.25 seconds into the shot?
	Time

(secs)
Height

(feet)
0.0
7.2

0.1

10.6

0.2

12.8

0.3

13.9

0.4

13.8

0.5

12.5

0.6

10.0




Answer:  


We will put this data into a copy of the Quadratic Model worksheet of Models.xls, then adjust the model parameters until the model fits the data well.

[1] Insert a new worksheet into Models.xls, labeling its tab “Basketball height model”.  Then copy into this new worksheet the content of the read-only Quadratic Model Template worksheet.

[2] Change the label in A2 from “Input” to “Time” for this data.  Change B2 from “Output” to “Height”.

[3] Select the numbers from the dataset (not the labels), and paste them into A3.  For this data, the numbers should fill columns A and B from row 3 to row 9.

[4] Select cells C3, D3, and E3.  Then spread them (and the formulas they already contain) down to row 9, matching the data.  All three columns should now show numbers.

[5] Make a scatter plot of columns A, B, & C.  This will show the data and the model on the same graph.  At first, the model points will be on a horizontal line through the origin, but they will move as the quadratic model parameters (in G3, G4, and G5) are adjusted.

[5] Adjust G3, G4, and G5 to make the model approximately match the data.  


[i] Set the shape parameter G5 to a positive number (start with 1) if the data curves upward, and to a negative number (start with –1) if the data curves downward.  Adjust G4 to make the bend of the model similar to the bend in the data (larger numbers cause sharper bends), but don’t try to match the shape exactly until step [iii] below.


[ii] Estimate x and y of the vertex of the data.  Set G3 to the estimated x value and G4 to the y value.


[iii] Now adjust G5 until the shape of the model is as close as possible to the shape of the data.


[iv] Finally, adjust G3 and G4 to shift the model as needed so that it goes right through the data.

[6] Now that you have a good model, you can add additional input values (e.g. 0.25 into A10), then read the result from column C (spread the C9 formula down if a value does not appear in C10.  (Because there is no data value for 0.25, B10 should remain blank and D10 and E10 should be erased.)


When the instructions above are followed for this data, the result should be approximately the spreadsheet shown below.  This spreadsheet provides the information to answer the questions asked in the problem:

[a] A quadratic model matching this data is 
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[b] The vertex of the graph is at x=0.34, so the ball reached its peak at 0.34 seconds into the shot.

[c] The vertex of the graph is at y=14, so the height of the ball at its peak was 14 feet.

[d] The model predicts that the ball will have a height of 13.5 feet at 0.25 seconds.

QUADRATIC-MODEL SPREADSHEET FILLED OUT WITH DATA FROM THIS EXAMPLE
	
	A
	B
	C
	D
	E
	F
	G
	H
	I

	1
	x
	y data
	y model
	Data-Model
	
	
	Quadratic model: y = –$G$5*(x-$G$3)^2+$G$4

	2
	Time
	Height
	Prediction
	deviation
	
	
	y = –59*(x-0.34)^2+14

	3
	0.0
	7.3
	7.1796
	0.0204
	
	
	0.34
	x coordinate of vertex

	4
	0.1
	10.7
	10.6016
	-0.0016
	
	
	14
	y coordinate of vertex

	5
	0.2
	12.9
	12.8436
	-0.0436
	
	
	-59
	shape coefficient

	6
	0.3
	14.0
	13.9056
	-0.0056
	
	
	
	

	7
	0.4
	13.9
	13.7876
	0.0124
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	8
	0.5
	12.6
	12.4896
	0.0104
	
	
	
	

	9
	0.6
	10.1
	10.0116
	-0.0116
	
	
	
	

	10
	0.25
	
	13.5221
	
	
	
	
	

	11
	
	
	
	
	
	
	

	12
	
	
	
	
	
	
	
	

	13
	
	
	
	
	
	
	
	


The shape of quadratic data can look different depending on where it is from on the parabola
A quadratic situation is easy to recognize when the data includes both sides of the peak or valley (as in the leftmost graph below), but if the data is all on one side you may need to look carefully to choose between a quadratic model and other nonlinear possibilities.  Here are examples of how a quadratic model and data can match:
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	The above graphs are still quadratic if turned upside down, or uniformly stretched, compressed, or offset.

Each of the graphs below also shows data points from different quadratic models.

	[image: image24.emf]
	[image: image25.emf]
	[image: image26.emf]
	[image: image27.emf]

	[image: image28.emf]
	[image: image29.emf]
	[image: image30.emf]
	[image: image31.emf]


Section 5: Using models fitted with Models.xls to predict values

The main purpose of using data to make a model formula is that the formula can then be used to compute predictions of what the output y would be for any input x.  This can be used to predict the future, to make inferences about the past (prior to the first data point), to find intermediate values between data points, and even to make a better estimate of what value you would get for the same measurement if you repeated it at one of the input values you already used. 

Extrapolation

The y = 1.8 x + 11 equation that fits the sediment-depth data well, for example, can be used to predict what sediment depth can be expected after day 80, the last day for which actual data was given.  Using data to predict what measurements for a process will be outside the range of data input values is called extrapolation. (“extra” comes from a Latin word meaning “outside of”).  

Example 7: What sediment depth does the y = 1.8 x + 11 model predict at 90 days after cleaning?

Answer:  Evaluate the model formula at
[image: image32.wmf]90

x

=

:

 


[image: image33.wmf]1.811

1.8(90)11

16211

173 millimeters

yx

y

y

y

=+

=×+

=+

=



Warning: Extrapolation can be very useful, but is not always dependable since its accuracy depends on whether the process continues to change in the same way as it did during the time that the data for the model was taken.  In general, people use extrapolation only for values that are within a limited distance from the last data point.  It would be reasonable to extrapolate the sediment depth to 100 days, or perhaps even to 150 days, but not to 1000 days unless you have other information that indicates that the rate of increase is constant for that period.

Interpolation
The most dependable use of a model formula is to estimate what the output measurement would have been for some input value that is between two of the input values for the data.  This process is called interpolation.  Interpolation is dependably accurate if the model is a good model.

Example 8a: What sediment depth does the y = 1.8 x + 11 model predict at 37 days after cleaning?

Answer:  Evaluate the model formula at
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Note that the computational process for interpolation is exactly the same as for extrapolation.  This is characteristic of the use of a model.  You treat any input value the same way – just plug it into the formula and evaluate the result.  You may decide you don’t trust the answer (e.g., the 1000-day sediment-depth extrapolation), but the model gives answers the same way in all cases.

There is no need to limit interpolation or extrapolation to whole-number inputs when fractional inputs make sense.  You could estimate the sediment depth at 22.5 days, or at 98.765 days.  But use some judgment here – you would not want to estimate midnight traffic flow based on a history of measurements made at noon.

Example 8b: What sediment depth does the y = 1.8 x + 11 model predict at 56.73 days after cleaning?

Answer:  Evaluate the model formula at
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Note that the final value is rounded to a precision consistent with the precision of the data.

Backwards extrapolation
You could even compute the model’s answer for an input value that comes before any of your data.  That does not make sense for the sediment data (since we are told that the tank was changed abruptly by cleaning just before this data was taken), but in other situations it is often possible to make good estimates of what conditions were before data was taken.

Example 9: An accumulated coating of rust on the siding of a building is measured on June 1 for 15 successive years, and the these thickness measurements are found to fit a linear model
[image: image38.wmf]0.0851.52
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, where y is the thickness in millimeters and x is the number of years since the first of these measurements in 1987.  Estimate what the thickness of the coating was on June 1, 1980.

Answer:  Evaluate the model formula at x = –7, since that corresponds to the year 1980 in the formula.
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As with forward extrapolation, you have to use judgment about how far away from the data you can depend on backward extrapolation.  Example 10’s 7-years-before extrapolation is reasonable, but using this model to estimate the rust thickness in 1950 would not be reasonable, since that would give a negative thickness (which implies that the building may have been built after 1950).
What if the same data points are measured again?


For the sediment-depth data, the prediction of the model for sediment depth at 40 days after cleaning is 83 mm, which is 4.4 mm less than the actual data value of 88.6 mm.  Which of these values would be best to use if we wanted to predict the depth at 40 days after some subsequent cleaning?  
Deviations between data values and model predictions can come from two different kinds of sources:

· Noise: The deviations may just be random variations in the process, in which case we will do better to use the model, since next time the deviation is just as likely to be in the other direction. In a sense, the model is more accurate than the data in this case.  The noise-suppressing smoothing effect that a model provides is an important benefit of the modeling approach.
· Oversimplified models: The relationship between the input and output variables for the process may not quite be a straight line, in which case even the best linear model will have errors that overestimate the data in some input ranges and underestimate it in others.  If the linear model is oversimplified in this way, we will do better to use previous measurements.  Better yet, we should use a non-linear model that has sufficient flexibility to follow the data more closely.
We can distinguish between these two cases by examination of the graph.  If noise is the source of the deviations, the graph will show random placement of data points above and below the model.  The deviations in the sediment-depth data were random, as shown by the graph from the fitting.  

But when a straight-line model is used for data whose underlying relationship is curved, the model will pass above most data points in some part of the range, and below most points in other parts.  In making predictions for such poor-model situations you should either use the previous measurements directly or, preferably, fit a more suitable model to the data and then use that model.

Section 6: Looking at the data in the other direction — making an inverse model


Often it is obvious which of the variables from the data set you want to be predicted by the model you intend to fit to the data.  But sometimes either choice makes sense, depending on what you are doing.  


In the case of the sediment-depth data we started with the model that is appropriate if you want to predict the sediment depth at a specified time after cleaning.  This model uses days as input and depth as output.  But an inspector might decide to measure the sediment depth in order to estimate how long it has been since the last cleaning.  He would need a model that uses depth as input and produces days as output.  This can be produced in exactly the same way as before, but the two columns of data switch their roles.

Example 10:  Describe the model to estimate days since cleaning from measurements of sediment depth.

Answer:  Make a new copy of the spreadsheet with the data and the linear function settings, then:

1. Swap column A and column B, including the titles at the top, but still label A2 “x” and B2 “y”.

2. Find good settings for the intercept and slope by the methods discussed earlier in this topic.

3. An example of a good model for this reversed data is
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This fitted model is the inverse of the 
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 model fitted earlier that used days as input and depth as output.  This is clearer if names are used in the formulas rather than x and y:
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In fact, we could have derived the inverse model from the original model by using algebra instead of model construction and have gotten almost the same answers (they might differ slightly because noise in the input data affects the fitting process somewhat differently than the same noise in the output data).

Section 7:  Systematically finding parameter values that fit a model to a dataset

The Models.xls workbook (or a similar workbook derived from it) provides a way for a dataset of x and y values (in columns A and B, respectively) to be matched to y predictions computed for that x value with a model formula (in column C).  The model formula makes use of the values of a few parameters in column G.  Changes to these parameters will thus change all the column C values.  For all types of model, the model-fitting process consists of finding values for the parameters which make the column C model values come as close as possible to the column B data values.  

The simplest way to find reasonable parameter settings is to make a scatter-plot graph of columns A, B, and C together, which will display the data and the model predictions on the same scale.  When good parameter settings have been found, the two graphs will overlap as closely as possible.  Once the graphs match well visually, the numerical differences between the data y value and the model y prediction (computed in column D) can sometimes be used to make fine adjustments to the parameter settings.

In general, even the best model will not fit the data exactly.  If the deviations from the model are randomly above and below it, they represent noise in the data — in such a case, probably no other model would do better.  On the other hand if most positive and negative deviations are grouped with several others of the same sign, this indicates the model does not fit the data well, perhaps because the kind of model formula being used cannot produce a shape similar to that of the data.
Summary of systematic curve-fitting techniques

· Make a graph showing the data and model points, so you can observe how good the fit is.

· First set the position parameters to approximate values, based on the kind of model: 

· Linear — estimate the intercept as the data y value for the x value closest to zero.

(If no x value is close to zero, redefine the data or formula by subtracting the first x value)
· Quadratic — estimate the vertex x and y parameters from the graph

· Estimate a beginning value for the other parameter from the graph or first two data points.

· Linear slope — set to the difference of the y values divided by the difference in x values.

· Quadratic shape — positive if the ends curve up, negative if the ends curve down

· Adjust the parameter values systematically to improve the initial estimates.

· Change the first significant digit by 1, observing if this moves the model toward the data

· Continue first-digit changes in the right direction until the model graph crosses the data.

· Once the first digit is known, adjust the second digit.

· Readjust the other parameter(s) to the same precision.

EXERCISES
Part I.  Reproduce the results in the Examples 1 – 10.
Part II.   For each dataset in these problems, please do not type it in yourself, but find the text below on the course web page and “copy and paste” it into the spreadsheet.   This will save you quite a lot of work.  
11. Which of these graphs indicate data in which the variables have an approximately linear relationship?   ANSWERS: [a] and[c]
	[a]
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12. For which of the datasets graphed in the previous exercise will a linear model probably be a better predictor of future measurements than the corresponding measurements in the dataset?

13. A truck delivers loads of kerosene.  The relationship between the gallons of kerosene it is carrying and the total weight in pounds of the truck follows a 
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 linear model, where x is the number of gallons and y is the weight.  What is the expected weight of the truck when it is loaded with 5290 gallons of kerosene?   ANSWER: 61,867 pounds.
14. What linear model would be appropriate if you want to use the weight of the truck in the previous problem to predict how much kerosene it is loaded with?
15. Which of these datasets has a relationship between the variables whose trend is linear?
ANSWERS: [a],[c], and [e] are linear; [d] is very noisy but may be linear
	[a]
X
Y
30

-122.02

60

-112.01

90

-105.19

120

-92.76

150

-72.19

180

-62.13

210

-50.07

240

-37.11

270

-21.60

300

-12.85

330

-0.93

360

7.75

390

19.88

420

46.92

450

63.04

480

73.17

510

86.94

540

94.80

570

100.27


	[b]
x

Y
-100

-182.39

-75

-154.87

-50

-141.15

-25

-122.83

0

-105.93

25

-87.78

50

-72.97

75

-60.00

100

-45.75

125

-32.09

150

-28.36

175

-18.14

200

-12.92

225

-0.25

250

-0.05

275

4.71

300

12.82

325

14.42

350

12.15


	[c]
X
y

-400

461.43

-350

444.21

-300

401.07

-250

419.03

-200

348.53

-150

360.21

-100

275.67

-50

176.27

0

190.39

50

180.19

100

119.80

150

112.96

200

-19.65

250

41.88

300

-79.24

350

-72.22

400

-43.34

450

-125.61

500

-121.65


	[d]
x
y

-45

-52.27

-40

-25.48

-35

-38.28

-30

-39.38

-25

-39.21

-20

-17.29

-15

-21.08

-10

-35.22

-5

-14.70

0

-15.89

5

1.54

10

-11.43

15

-24.28

20

-13.48

25

-20.92

30

-16.29

35

4.75

40

9.65

45

-7.65


	[e]
x
Y
0

23.43

1

23.53

4

23.84

9

24.38

16

25.03

25

26.07

36

26.69

49

28.26

64

30.02

81

31.07

100

32.47

121

35.04

144

38.14

169

40.35

196

43.69

225

46.46

256

51.29

289

55.22

324

58.98




16. For each of the datasets in the previous problem that was identified as having a linear relationship, find and report a good linear model.
17. Use the model for dataset [a] above to predict the output y variable for input values of x at intervals of 100 from 0 to 600.    
	ANSWER:
	x
	y 

	
	0
	-140.6

	
	100
	-97.2

	
	200
	-53.8

	
	300
	-10.3

	
	400
	33.1

	
	500
	76.6

	
	600
	120.0


18. Use the model for dataset [e] above to predict the output y variable for input values of x at intervals of 50 from 0 to 350.
19. For each of the graphs below, identify where a linear or quadratic model would be appropriate, or whether neither of these.  In each case, write a sentence stating what reason you have for the choice you make.
ANSWERS:

  [a] A quadratic model would be appropriate, because the graph has a shape that is approximately quadratic.

  [b] A linear model would be appropriate, because the graph is close to a straight line.

  [c] A linear model is reasonable, since there is no clear bend in the data graph.  However, there is enough noise that it is possible that a nonlinear model such as a quadratic would fit a little better.

  [d] Neither a linear nor a quadratic model is appropriate, since the data is clearly nonlinear, but is not parabolic.
	[image: image48.emf]0

10

20

30

40

50

60

70

80

90

0 5 10 15


	[image: image49.emf]0

2

4

6

8

10

12

14

16

0 5 10 15


	[image: image50.emf]0

2

4

6

8

10

12

14

16

18

0 5 10 15


	[image: image51.emf]0

20

40

60

80

100

120

0 5 10 15




For each dataset in the following problems, please do not type it in yourself, but find the data text on the course web page and “copy and paste” it into the spreadsheet.   This will save you quite a lot of work. 

20.  For the dataset to the right about cable systems:
a. Identify the input and output variables for predicting cable system count.

b. Restate the input variable in terms of years since the first year given.

c. Use a spreadsheet to make a graph of the data and label the axes. (hand-labeling is okay)

d. Use the quadratic-model spreadsheet to find a good quadratic model and state its formula.
e. Using the model, predict the number of cable systems in 2003.
f. What year does the model imply that the most cable systems existed?

21.  For the dataset at the right about gas mileage (MPG) at different speeds (MPH):

a. Identify the input and output variables appropriate for predicting mileage.

b. Use a spreadsheet to make an appropriate graph and label the axes. (hand-labeling is okay)

c. Use the quadratic-model spreadsheet to find a good quadratic model and state its formula.
d. Using the model, predict the gas mileage for a speed of 25 mph.
e. At what speed does the model imply that gas mileage is best?
ANSWERS:
  [a] To predict mileage, MPH should be used as input, MPG as output.

  [b] 
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  [c] y = -0.0138*(x-42.845)^2+32.064
  [d] The mileage predicted by the model for 25 mph is 27.67 mpg.

  [e] Since the highest mileage will be at the vertex of the parabola, the model predicts a maximum mileage of 32.064 mpg, which will is predicted to occur at a speed of 42.845 mph.
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