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Topic P – Exponential Models and Model Comparison Techniques

Objectives:

1. Recognize when a dataset shows an exponential relationship between the variables.

2. Use a spreadsheet to adjust the initial-value and slope parameters of an exponential formula so that the graph of corresponding points are close to the points graphed from a data set.

3. Use the exponential formula that best fits the data as a model for the data, predicting the output y value for any specified input x value.

4. Compare the extrapolation behavior of different types of model that fit the same data.

5. Choose among linear, quadratic, and exponential models based on a graph of the dataset.

6. Recognize the quality of a model based on whether positive and negative residual deviations are randomly distributed or grouped together.

7. Modify a model formula to simplify the fitting process without changing the dataset. 

Overview:  Additional tools for modeling

In an earlier topic, you learned how to find good model formulas for data whose pattern is a straight line or a parabola.  In both cases, you used worksheets from Models.xls to find good parameters for the models.  These worksheets were very similar, differing only in the formula placed in the C3 cell and in the names and meanings of the parameters in cell G3, G4, etc.  Other models are just as easy.

In this topic we will add exponential models, useful when the output changes by the same percentage each step.  We will also learn how to compare and choose among types of models.  Finally, we will learn to modify the model formula when needed to make the graph or parameters more convenient. 
Section 1:  Processes with constant-percentage growth/decay rates – exponential models

In situations where the cause of change in a quantity is the amount of that quantity that is currently present, the output variable changes by the same percentage for each equal step in the input variable.  Such situations have an exponential model formula, which means that the input variable is used as an exponent in the formula.  Accumulation of compound interest in a bank account is an example of exponential growth, and radioactive decay is an example of exponential decay.  Both are modeled by exponential formulas, with the difference between growth and decay depending simply on whether the change rate is positive or negative.
	Relationship of different exponential models to the x-axis
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Examples of exponential formulas:
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Since any number raised to the power of zero equals exactly 1, the y-intercept of an exponential formula (i.e., the formula y value when x equals zero) will be just the multiplier term (such as 275, 65.08, 6400, and 0.00836 above).  This intercept is one parameter of the exponential model, and reflects the starting value for processes that start at x=0.

The other parameter reflects the rate at which the value of the formula will change.  The simplest way of expressing it is to use the desired rate to make an appropriate base for the input parameter x as an exponent.  This is the role of “1+0.05”, “1-0.03”, “1-0.25”, and “1+0.21” in the examples above.  The growth rates of 0.05, –0.03, –0.25, and 0.21 could instead be expressed as 5%, –3%, –25%, and 21%.  
A negative growth rate is actually a decay rate, since it will result in values closer to zero as x becomes larger.  When the growth rate is negative, the base of the exponent will be a number that is less than 1 but greater than 0.  Thus the base for a –0.03 growth rate (that is, a 3% decay rate) would be 0.97, and the base for a –0.25 growth rate (i.e., a 25% decay rate) would be 0.75.


Warning:  An exponential decay rate can never be more than 100% (that is, have a growth rate of less than –1.0).  Such a rate would not correspond to a realistic situation, and would make the base of the exponent a negative number.  Spreadsheets will give error messages when negative numbers are used as a base in calculations with decimal exponents (unless the exponent is exactly a whole number). 

Exponential models include all 
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forms such as:
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InitialAmount is the y value at x = 0
Note that some data may have inputs starting at non-zero values (e.g., 1975), in which case it will usually make the model simpler if the inputs are redefined to start at zero (e.g., as “years since 1975”) or if the model is modified to adjust for a non-zero starting value, as is illustrated in a later section.
GrowthRate is the relative increase in y when x increases by 1
The growth rate is usually expressed in formulas as a decimal number but is also often described as a percentage (e.g., 0.05 is the decimal representing 5%).  For exponential decay, the growth rate is negative but must be between zero and minus one (that is, between 0% and –100%).  A growth rate of zero would result in the output not changing from its initial value, since 1 raised to any power is still 1.
Often the formula will have the growth rate already combined with the 1, so that the growth term becomes (1.05)x or (105%)x.  For negative rates, this term will be less than 1, such as (0.95)x or (95%)x.
Percentages must be changed to decimals when computing with them.  Most spreadsheet programs will do this automatically if the percentage number is followed by a % character.
	Example 1: Fitting an exponential model to find the growth rate
Use this data from the first 10 U.S. censuses to make an exponential model of U.S. population growth, then use that model to answer these questions:  [Use the Exponential Model worksheet in Models.xls.]
[a] Does an exponential model fit this data well?  How do you know?

[b] What was the average annual growth rate during this period?

[c] What population does the model predict for 1900?  For 2000?

Solution procedure:
[1] Redefine the input variable to “Years since 1780”, adjusting the x values in column A to start at 0. 
	Year

Population
(millions)

1780

2.8

1790

3.9

1800

5.3

1810

7.2

1820

9.6

1830

12.9

1840

17.1

1850

23.2

1860

31.4

1870

39.8




[2] Copy the redefined data values into a copy of the Exponential Model template.  The numbers should fill rows 3 to 12 in columns A and B. 

[3] Select cells C3, D3, and E3.  Then spread them (and the formulas they already contain) down to row 12.  All three columns should now show numbers.  [The formula in C3 is “=$G$3*(1+$G$4)^A3”.]
[4] Make a scatter plot of columns A, B, & C.  This will show the data and the model on the same graph.  At first, the model points will be on a horizontal line through the origin, but they will move as the exponential growth-rate model parameters (in G3 and G4) are adjusted.

[5] Adjust G3 (initial value) and G4 (growth rate) to make the model approximately match the data.  


[i] Set G3 to 2.8, the first value in the table.  (We can later adjust this to reduce standard deviation). 

[ii] Set G4 to 0.01 (which is 1%), then adjust it until the shape of the model is close to that of the data at about 0.03 (which is 3%).
[6] Adjust the parameters using feedback from the graph until further adjustments do not significantly improve the fit.

EXPONENTIAL-GROWTH WORKSHEET FROM Models.xls FILLED OUT WITH EXAMPLE 1 DATA

	
	A
	B
	C
	D
	E
	F
	G
	H
	I

	1
	x
	y data
	y model
	Data-Model
	
	Exponential model: y = a * (1+r)^x

	2
	Year-1780
	Height
	Prediction
	deviation
	
	
	y = 2.8 * (1+0.03)^x

	3
	  0
	2.8
	2.80
	0.0000
	
	
	2.8
	a: Initial value at x=0

	4
	10
	3.9
	3.76
	0.1370
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	0.03
	r: Growth rate

	5
	20
	5.3
	5.06
	0.2429
	
	
	
	

	6
	30
	7.2
	6.80
	0.4037
	
	
	
	

	7
	40
	9.6
	9.13
	0.4663
	
	
	Model and data value counts

	8
	50
	12.9
	12.27
	0.6251
	
	
	2
	Number of parameters

	9
	60
	17.1
	16.50
	0.6035
	
	
	10
	 Number of data points

	10
	70
	23.2
	22.17
	1.0301
	
	
	
	

	11
	80
	31.4
	29.79
	1.6055
	
	
	Goodness of fit of this model

	12
	90
	39.8
	40.04
	-0.2413
	
	
	4.910062
	 Sum of squared deviat

	13
	120
	
	97.19
	
	
	
	0.783427
	Standard deviation

	14
	220
	
	1867.87
	
	
	
	
	


Answers to questions asked:


[a] Yes, this model fits the data well, since the deviations are only a few percent of the typical population values.

 
[b] The model growth-rate parameter shows the average annual growth rate of U.S. population from 1780 to 1870 was about 3.0%.

[c] Evaluate the model at 120 (1900 is 120 years since 1780), and 220 (for 2000) to show that a model based on the 1780-1870 census data predicts a U.S. population of about 97 million in 1900 and 1,868 million in 2000.  (Actual population was 76 million in 1900 and 281 million in 2000, showing that the rate of U.S. population growth slowed down substantially after 1870.)
Characteristics of exponential models

Doubling time and half-life:  In an exponential model, equal steps in the input variable will always increase (or decrease) the value of the output variable by the same percentage.  When the input variable is time, it is often useful to describe the process by how long it takes for the output to double (for growth) or decline to half (for decay) — these are called the “doubling time” or “half-life”.  These values can be estimated from the graph of the model by taking the y value in the model that is furthest from zero, drawing a horizontal line at half that height, then noting the difference between the x values of the original point and the point where the half-height line crosses the graph of the model.
Example 2: Estimate the doubling time of the model for the 1780-1870 U.S. census data.
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Solution: The highest point on the graph of the model is (x=90, y=40.0), predicting a 1870 population (90 years after 1780) of 40.0 million people.  Half that y value is 20.0, and we can see that the model graph crosses that value about x=65, halfway between the x=60 and x=70 data points.  Subtracting 65 from 90 tells us that the y values in the model double in about 25 years.

Comments on this solution:  Notice that the model predicts a population of 10 million at about x=40, then 20 million at about x=65, then 40 million at about x=90 — this shows that the doubling time of 25 years is the same for different parts of the graph (this is true only for exponential models).  Using the highest point graphed on the model makes it easier to estimate the coordinates (estimating the x position for y=5 would be harder, for example).  For a decaying-exponential model, we still use the highest point but it is the first point on the left, so the time to the half-height point is a half-life rather than a doubling time.

Convergence to zero: Exponential decay models have a negative “growth” rate, so that at each step the output becomes smaller by a fixed percentage.  This leads to output values that come closer and closer to zero but never quite reach it.  But the difference from zero can quickly become small enough to be negligible for practical purposes — a process whose output value decreases by half every hour will be less than a ten-millionth of its original size a day later.  Notice that if the initial value is negative, this convergence to zero is from below the x-axis, with increasing values of y that come closer and closer.
	Example 3: The intensity in Curies of a radioactive material that is used to make x-ray images of pipes is calibrated every 15 days, giving the dataset shown to the right.  Fit an exponential model to the data to determine if this intensity exhibits exponential decay.  If it does, find the decay rate of the material.

Solution process:  

   [1] Copy the data into the ExponentialModel.xls spreadsheet on the course website.

   [2] Make a scatter plot of the data and model (columns A, B, and C).

   [3] Set the InitialAmount parameter (in G2) equal to the first data y value.

   [4] Set the GrowthRate parameter to a small negative number (start with –0.02, which is a decay rate of 2% per day), then adjust this parameter so that the model matches the data well.  We find that a growth rate of –0.0094 gives the best fit.

Answers:

    Since the data fits the model well, the intensity exhibits exponential decay.

    The growth rate of the model is –0.0094, a decay rate of 0.94% per day.
Example 4: Estimate the half-life of the exponential decay process above.

Solution process:  

     Examine the model graph (or the values in column C) to find when the output declines to half the initial amount of 160 Curies.  This time is the half-life of the decay process.

Answer: 

    Since the intensity is 78.6 Curies at day 75, the half-life is about 75 days.  (Note that the intensity at day 150 is about ¼ the original value, as it should be.)
	Days

Curies

0

159.9

15

138.4

30

120.2

45

104.7

60

91.5

75

78.6

90

68.7

105

58.9

120

51.2

135

44.8

150

39.6

165

34.1

180

29.0

195

25.8

210

22.1

225

19.6

240

17.1

255

14.3

270

13.1





Unbounded growth:  Exponential growth models become very large surprisingly quickly.  This is because each increase causes later increases to be larger (since at each step the rate of increase depends on the current amount).  An investment with a 7.2% annual return will double to 10 years, then redouble each decade to reach 1000 times the original value in a century.  Under favor​able conditions, bacteria can reproduce (and thus double their numbers) about every 30 minutes, leading to a million-fold increase in ten hours.  The process by which scientists amplify the genetic material DNA so that it can be detected chemically doubles the number of DNA fragments every 2 minutes, leading in less than an hour to about 30 million copies of each original piece.  Most explosions start with exponential growth, as each small reaction causes several others, which in turn each cause more, and so on.  Notice that if the initial value is negative, the unbounded growth can be in a negative direction.



Such growth processes can not continue indefinitely.  Although there are many natural processes that show exponential growth at certain stages, the steady build-up of the speed of exponential growth ensures that some limit (often exhaustion of some essential resource) is reached sooner or later.  This should be kept in mind when modeling — data often show a pattern that will not continue.

Negative output values in exponential models:  When the initial amount is a negative number (this usually happens when the y value describes a difference from a reference value), the only difference is that all of the model’s output values will be negative and the graphs will thus be reflected around the x-axis, “upside down” compared to models with positive initial values.

	  Relationship of exponential models with negative initial amounts to the x-axis
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	Example 5: The table to the right shows the temperature of a soda can as it warms up in a room whose temperature is 75(F.  Use an exponential model to: [a] estimate the decay rate per minute of the difference between the can temperature and the room temperature, [b] predict the can temper​ature at 20 minutes, and [c] estimate the half-life of the warming process.

Solution: 


Since the temperature of the can is not converging on zero, we can’t directly use can temperature as a variable in an exponential-decay model.  Instead, we will subtract the room temperature from the can temperature and use that difference as the output variable for the model.
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Put this dataset into the exponential-model spreadsheet, then adjust the parameters to make the model fit the data.  You will find that the data is well matched by an exponential model whose initial-value parameter is -40 and whose “growth” rate is -0.09 (which is really a decay rate since it is negative).
	Original data

Minutes out 

of cooler
Temp​erature

 of can

0

35

5

50

10

59

15

65

Redefined data

Minutes out 

of cooler
Degrees 

from 75( F
0

-40

5

-25

10

-16

15

-10





Evaluating the model for x = 20 gives a predicted difference at that time of 6.1 degrees below the room temperature of 75(F.


The data point whose y value is furthest from zero is the first one at (x=0, y=-40).  The line halfway to the x-axis is at y=–20, which crosses the model graph at between 7 and 8 minutes.

Answers: 


[a] The decay rate of the temperature difference is 8.8% per minute.


[b] The predicted temperature at 20 minutes is 68.9(F.


[c] The half-life of the warming process is between 7 and 8 minutes.
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Symmetry of exponential growth and decay:  Despite their different responses to large input valves (as described in the previous two paragraphs) exponential growth and decay are basically the same process, as shown by the growth and decay graphs shown to the right.  These graphs are mirror images of each other, indicating that in this context growth is simply backwards decay, and vice versa.  
This is why the same mathematical formula can be used for both growth and decay – the difference is just whether the base that is used is larger or smaller than 1.
Tip on fitting exponential models by hand:  If you get strange results in an exponential-modeling problem, check to see if you have made the rate too large (perhaps by entering a percentage without a percent character where a decimal was expected).  This causes particularly dramatic errors when a negative number is entered, since attempting to raise a negative number to a fractional power will cause the spreadsheet to show an error message.

Section 2: Comparison of different models for the same data
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Sometimes different kinds of model can be fitted to the same data reasonably well.  In such cases, any of the models may be used for interpolation.  But different types of model give substantially different predictions when extrapolated, so it is important to have ways of choosing among them if prediction of future values is intended, as it often is.  This is more of an issue when you are aware of the many different possibilities for model formulas, as you will be by the end of this course.  Here are some of the ways that people use to decide among models.
· Examine how well the different models fit the graph:  This is the basic test of a model, and you can eliminate any kind of model whose best-fit graph is clearly inferior to that of another possibility.  If none of the kinds of models you know about can be made to fit the data well, you should avoid making predictions with those models for the process that produced that data.

· Examine how positive and negative residual deviations are mixed:  For the best model, the sequence of deviations will be a random mix of positive and negative values, indicating that the data points are randomly scattered above and below the model points.  Big adjacent groups of positive or negative residual values that cannot be avoided by changing the parameters indicate that the model does not match the data pattern.  
· Prior information: Make use of information you have about the process being modeled other than the data values themselves.  This may be your own knowledge about the kind of process that produced the data, or experts in the field may have already identified what kinds of models are best for the kind of data you have.

· Extrapolation behavior of the model:  If extending the model a moderate distance forward or back from the data values gives unreasonable predictions (such as negative values for population), that model should be avoided, especially if one of the other possibilities has better extrapolation behavior.

· Numerical measures: In a later topic you will learn how to use and interpret the standard deviation, a numerical measure of how good the fit is between a dataset and a particular model.  This value is based on the differences (in column D) between the data (in column B) and the model prediction (in column C).  The best model will usually have the smallest standard deviation.

Example 6: Comparing different models of sales-data history (when both fit the data)
The dataset below of total retail sales in the United States from 1992 to 1999 looks as if it could be fit pretty closely by a linear model, in which sales increase by the same amount each year.  However, most economic trends increase by about the same percentage each year on the average, so an exponential model might be more appropriate and would also be a good fit.  To choose between these alternatives, we will find both best-fit models and examine what happens to them when extrapolated back 20 years.
	Year

	Sales (B$)


	1992

	1,952


	1993

	2,082


	1994

	2,248


	1995

	2,359


	1996

	2,502


	1997

	2,611


	1998

	2,746


	1999

	2,995
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Question: For this data, which model has more reasonable extrapolation behavior – linear or exponential?
	Solution approach:
 [1] Copy the dataset into the Data Scratch Pad worksheet in Models.xls and modify it so that the input variable is years since 1992.  This will make the model parameters easier to find.  (The redefined dataset is shown to the right.)

 [2] Use a copy of the Linear Model template to find the best linear model, which is about 
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 [3] Use the Exponential Model template to find the best exponential model, which is about 
[image: image15.wmf]1971(1.06)

x

y

=×


 [5] Note that the graphs of the two models both fit the data well.
	Since

1992

Sales 

(B$)

0

1,952

1

2,082

2

2,248

3

2,359

4

2,502

5

2,611

6

2,746

7

2,995





[6] In both the Linear Model and Exponential Model worksheets, follow these steps:

[a] Insert the values from -1 to -20 into column A below the existing data.  These new input values correspond to the years from 1991 back to 1972.
[b] Spread the formula in column C down as far as the new input values.  This will give the sales prediction of that model for the previous 20 years.  The results for the two models should look like the worksheet extracts shown below.

	Extracts from Models.xls worksheets, with extrapolations back for 20 years

	Linear Model 
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A

B

C

1

x
y data
y model

2

Year-1992
Sales (B$)
Prediction
3

0

1,952

1943

4

1

2,082

2084

5

2

2,248

2225

6

3

2,359

2366

7

4

2,502

2507

8

5

2,611

2648

9

6

2,746

2789

10

7

2,995

2930

11

-1

1802

12

-2

1661

13

-3

1520

14

-4

1379

15

-5

1238

16

-6

1097

17

-7

956

18

-8

815

19

-9

674

20

-10

533

21

-11

392

22

-12

251

23

-13

110

24

-14

-31

25

-15

-172

26

-16

-313

27

-17

-454

28

-18

-595

29

-19

-736

30

-20

-877


	Exponential Model 
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A

B

C

1

x
y data
y model

2

Year-1992
Sales (B$)
Prediction
3

0

1,952

1971.00

4

1

2,082

2089.26

5

2

2,248

2214.62

6

3

2,359

2347.49

7

4

2,502

2488.34

8

5

2,611

2637.64

9

6

2,746

2795.90

10

7

2,995

2963.66

11

-1

1859.43

12

-2

1754.18

13

-3

1654.89

14

-4

1561.22

15

-5

1472.85

16

-6

1389.48

17

-7

1310.83

18

-8

1236.63

19

-9

1166.63

20

-10

1100.60

21

-11

1038.30

22

-12

979.53

23

-13

924.08

24

-14

871.78

25

-15

822.43

26

-16

775.88

27

-17

731.96

28

-18

690.53

29

-19

651.44

30

-20

614.57
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[c] Make a new graph of the data and model (the A1:C30 rectangle of cells).  In the graphs below showing the extrapolations, the scales have been set to equal and gridlines have been omitted, to make comparisons easier.  But default-setting graphs will have the same information.

[6] Compare the extrapolated models.  In this case, the linear extrapolation back 20 years predicts negative sales totals in 1972, which is obviously unrealistic.  The exponential model remains positive regardless of how far back it is extrapolated, which shows that the exponential model is a much better choice for a sales model.
Section 3: Choosing a trial model based on the pattern of the data graph

In most cases, it will not be difficult to decide which type of model will best fit the trendline of the data.  Each type of model has its own characteristics, which usually means that only one of them, if any, will be capable of fitting the data well.  If you identify a good candidate for a model, you can test it by using the appropriate worksheet to find its best-fit parameters and see how good the match is.  If no model you know of fits the data, explain what aspect of the data pattern lets you know that model won’t work.
Example 7 – for each graph below, is a linear, exponential, quadratic, or some other model appropriate?
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	[c] [image: image20.emf]0

20

40

60

80

100

120

0 5 10 15
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Answers:

[a] Linear.  While the graph is noisy, the trendline cannot be quadratic because it shows no sign of bending.  It cannot be exponential since it isn’t showing any sign of bending to approach the x-axis.  The best-fit straight line would leave only random noise, so it is the best model in this case.


[b] Quadratic.  Since the graph changes direction from downward to upward as it goes from left to right, it cannot be linear or exponential.  The graph is symmetric enough that the parabola that a quadratic model produces a trendline would be a good fit.


[c] A decaying exponential.  The trendline is clearly not linear, and it approaches but does not cross the x-axis.  A quadratic would also fit reasonably well (in that case the curve would go up again if extrapolated to the right), but an exponential would fit better and also is a simpler formula.


[d] A growth exponential.  The data trend starts with a positive intercept and about doubles for each five steps.  This is a faster increase than the best-fit quadratic, which would not quite follow the data 

[e] Linear, although with significant noise.  The best-fit line is about horizontal, so its slope is close to zero.  A dataset that consists of repeated measurements of the same thing (as is often done to test the stability of the measurement process) would look similar to this.


[f] None of the listed models would work.  This graph changes between upward and downward twice, while a quadratic can only change once and the other listed models cannot make that much of a direction change at all.  As we will see in a later topic, there are other models to use in this case.
Section 4: Building redefinition of variables into model formulas
Redefinition of input parameters


In several different modeling problems so far (including those using population and sales data in this topic), we have redefined the input variable (e.g., to “Years since 1992” or “Years since 1790”) so that the parameter values for the model did not refer to projected values at 0 AD.  We did this by replacing the “Year” column with a “Years since …” column, changing the numerical values appropriately by subtracting the first year in the dataset.  This approach produces correct answers with reasonably-sized parameter values for the model, but having to change back and forth between the “year” and the “years since” version of the parameter is awkward, and graphs made with the “years since” version do not directly display the year, as would be convenient.  

	
These problems can be avoided by some simple changes to the formula of the model.  The basic idea is that for a problem where we previously would have used “Years since 1992” and subtracted 1992 from each year listed in the data table, we will now leave the data table alone but instead replace each “x” in the model formula by the expression “(x–1992)”.  The examples below use the retail sales data from an earlier section to show what effect this model-modification strategy would have for linear and exponential models of that dataset.  Remember that the formula in cell C3 is expressed in spreadsheet format, so that what we do there is replace “A3” with “(A3-1992)”.  [Note: Always include the parentheses shown, so that the subtraction is done before any other operation.]

	US Retail Sales

Year

Sales (B$)

1992

1,952

1993

2,082

1994

2,248

1995

2,359

1996

2,502

1997

2,611

1998

2,746

1999

2,995




Example 8:  Modify the linear model for US Retail Sales so that the parameters are easy to find, without subtracting 1992 from each of the input x values in column A.

[1] Insert a new Linear Model worksheet.


[2] Copy the data into columns A and B, leaving the year values as they are.

[3] Set cell H3 to the phrase “Model output in 1992” (replacing the label “Intercept”).

[4] Modify the content of cell G1 by replacing the “x” in the expression by “(x-1992)”.

[5] Modify the content of cell C3 by replacing “A3” by “(A3-1992)”.


[6] Spread the modified formula in cell C3 down to row 10 to match the data.


[7] Spread the formulas in D3 and E3 down to row 10.


[8] Make a scatter plot of columns A, B, and C (select the rectangle A1:C10) to show the model and the data together so that you can watch how well they match while you adjust the parameters. 

[9] Adjust the model parameters, using the following steps:



[a] Set G3 to 1,952, which is the dataset value for 1992 (this may be adjusted further in step [c]).


[b] Adjust the G3 parameter until the model graph closely follows the shape of the data.



[c] If needed for the best fit, make small adjustments to G3 so that the model moves up or down.


[10] Use the model to predict sales for any specified year (e.g., 2000) by entering the year number for which you want a prediction at the bottom of column A. 
Resulting worksheet:
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	A
	B
	C
	D
	E
	F
	G
	     H

	1
	x
	y data
	y model
	
	
	
	Linear model: y = m * (x-1992) + b

	2
	Year
	Sales (B$)
	prediction
	
	
	
	y = 140 * (x – 1992) + 1952

	3
	1992
	1,952
	1,952
	 
	 
	
	1,952
	b: Model output in 1992
	
	

	4
	1993
	2,082
	2,092
	
	
	
	140
	m: Slope
	
	

	5
	1994
	2,248
	2,232
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	6
	1995
	2,359
	2,372
	
	
	
	
	
	
	

	7
	1996
	2,502
	2,512
	
	
	
	
	
	
	

	8
	1997
	2,611
	2,652
	
	
	
	 
	
	
	

	9
	1998
	2,746
	2,792
	
	
	
	 
	
	
	

	10
	1999
	2,995
	2,932
	
	
	
	
	
	
	


Things to notice about this process:

  [i] The values on the x-axis of the graph are the actual year numbers, not years since 1992.


 [ii] The final parameter values are the same values that were found by the subtract-1992 method.


[iii] When making predictions with the model, there is no need to subtract 1992 from the x value.


[iv] There is nothing in this process that makes use of the fact that the formula was linear — this means that exactly the same instructions can be followed for any model whose G3 parameter gives the prediction of the model when x = 0.
Example 9:  Modify the exponential model for US Retail Sales so that the parameters are easy to find, without subtracting 1992 from each of the input x values in column A.


Follow the instructions for Example 8, except use a copy of the Exponential Model worksheet
[image: image41.png]


 Top of the resulting spreadsheet:

	
	A
	B
	C
	D
	E
	F
	G
	     H

	1
	x
	y data
	y model
	
	
	
	Exponential model: y = a * (1+r)^(x-1992)

	2
	Year
	Sales (B$)
	prediction
	
	
	
	y = 1952 * (1 + 0.06) ^ (x – 1992)

	3
	1992
	1,952
	1,952
	 
	 
	
	1,952
	 a: Model output in 1992
	
	

	4
	1993
	2,082
	2,069
	
	
	
	0.06
	 r: Growth rate
	
	


Redefinition of output parameters
	
In the example discussed earlier where a soda can warms up in a 75º room, subtraction of the room temperature from the column B temperature-data values was needed in order to use an exponential-decay model to predict the process.  This was necessary because the standard exponential-decay model can only converge on zero as its asymptotic value, so when using it we need to model the temperature difference, not the temperature itself.


But we can avoid the need for changing the data if we modify the model formula to add on the room temperature to the prediction.  The exponential part of the formula will still converge on zero, but the formula as a whole will now converge on the room temperature, as is needed for correct predictions.
	Soda-can warm-up in a 75º room
Minutes out 

of cooler

Temp​erature

 of can

0

35

5

50

10

59

15

65




Example 10:  Modify the exponential model formula for the warming of a soda can in a room whose air temperature is 75 ºF, without subtracting 75 from each of the data y values in column B.

[1] Insert a new worksheet and label it “Adjusted soda warm-up model”, then copy into this new worksheet the content of the Exponential Model Template worksheet.

[2] Copy the data into columns A and B, leaving the temperature values as they are.


[3] Set H3 to the phrase “Temperature at 0 minutes” as a reminder of what is being predicted.

[4] Modify the content of cell G1 by adding “+75” at the end just before the last quotation mark.


[4] Modify the content of cell G2 by adding “+75” at the end just before the last quotation mark.


[5] Modify the content of cell C3 by adding “+75” at the end.

[6] Spread the modified formula in cell C3 down to row 6 to match the data.


[7] Spread the formula in D3 down to row 6.


[8] Make a scatter plot of columns A, B, and C (select the rectangle A1:C6) to show the model and the data together so that you can watch how well they match while you adjust the parameters. 

[9] Adjust the model parameters, using the following steps:



[a] Set G3 to 35, which is the dataset value for 0 minutes.



[b] Adjust the G4 growth-rate parameter until the model graph closely follows the shape of the data.  The decay rate is the same 8.8% that was found by the subtract-room-temperature method.


[c] If needed for the best fit, make small adjustments to G3 so that the model moves up or down.


[10] Use the model to predict temperature for any specified time (e.g., 20 minutes) by entering the minute number for which you want a prediction at the bottom of column A. 

Resulting worksheet:
	
	A
	B
	C
	D
	E
	F
	        G                       H

	1
	x
	y data
	y model
	
	
	
	Exponential model: y = a * (1+r)^x + 75

	2
	Minutes 
	Temperature
	Prediction
	
	
	
	y = –40 * (1 – 0.088)^x + 75

	3
	0
	35
	35.00
	
	
	
	–40
	a: Initial temperature difference

	4
	5
	50
	49.76
	
	
	
	–0.088
	r: Growth rate

	5
	10
	59
	59.08
	
	
	
	

	6
	15
	65
	64.95
	
	
	
	

	7
	
	
	
	
	
	
	

	8
	
	
	
	
	
	
	


Exercises:

Part I.  
Reproduce the results in Examples 1–10.

Part II.   
[11 & 12] For each of the graphs below, identify where a linear, quadratic, or exponential model would be appropriate, or where none of these three choices would work.  In each case, write a sentence stating what reason you have for the choice you make. 
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Instructions on using modeling spreadsheets to build best-fit models (for use on exercises 13-20):

[1] Copy the data into the Data Scratch Pad worksheet in Models.xls and make a scatter plot to look at to decide what kind of formula (linear, quadratic, or exponential) to use for the model.

[2] Copy the Models.xls template designed to fit the chosen kind of model into a new worksheet, labeling the new worksheet with a reference to the problem.
[3] Copy the data into the worksheet, putting the input data values in column A and the output data values in column B, with the numbers starting at line 3.
[4] Select C3:E3, then spread the formulas in these cells down to all the rows that have data values.

[5] Make a scatter-plot of columns A to C, which should give you a graph of the data in one color combined with a graph of the model values in a different color.

[6] Adjust the parameters until the model graph is as close to the data as possible, indicating that the current parameter settings for the chosen model fit the data about as well as a model of that kind can.
[8] Examine the graph to see whether this is a good model (the data points are randomly above and below the model) or whether a better model should be looked for.
For each dataset in the following problems, please do not type it in yourself, but find the data table shown below on the course web page and “copy and paste” it into the spreadsheet.   This will save you quite a lot of work. 
	Drug concentrations

	Elapsed hours

	Concentration

((g/ml)


	1

	17.4


	2

	11.2


	3

	7.5


	4

	4.7


	5

	3.2


	6

	2.1



	
	Coffee cool-off
in 70º room
Minutes since pouring

Coffee temp.
(F

0

112.7

2

103.6

4

96.8

6

91.2

8

86.7

10

83.3


	Number of web sites

Month/Year

Sites

June 1993

130

Dec 1993

623

June 1994

2,738

Dec 1994

10,022

June 1995

23,500

Dec 1995

92,000



	World Population Growth
Year

Population

1900

1,550,000

1910

1,750,000

1920

1,860,000

1930

2,070,000

1940

2,300,000

1950

2,400,000


	Stopping Distances
Speed
(mph)

Distance
(feet)

20

41

30

71

40

118

50

176

60

240

70

316


	UT Austin Tuition

Year

Tuition

1989

410

1990

440

1991

510

1992

590

1993

715

1994

770

1995

930

1996

1,085

1997

1,200




[13] The concentration of a drug in the bloodstream is measured hourly after injection, giving the results shown in the “Drug Concentrations” dataset above:
a. Identify the input and output variables.

b. Use a spreadsheet to make an appropriate graph and label the axes. (hand-labeling is okay)
c. Use the exponential-model spreadsheet to find a good exponential model and state its equation.
d. Using the model, predict the concentration at 9 hours.

e. How long after the injection does the model predict that the concentration will have fallen to 10.0 (g/ml?
f. What decay rate does the model imply for the concentration of the drug?
[14] The temperature of a cup of coffee is measured every 2 minutes, giving the “Coffee cool-off” dataset shown above.  The room temperature is 70( F.

a. Identify the input and output variables.

b. Restate the temperatures into a form suitable for an exponential model.
c. Use a spreadsheet to make an appropriate graph and label the axes. (hand-labeling is okay)

d. Use the exponential-model spreadsheet to find a good exponential model for the temperature difference and state its equation.
e. What decay rate does the model imply for the temperature difference?
f. Using the model, predict the temperature 15 minutes after pouring.

g. About how long after pouring will the temperature be 80( F?
[15] Solve the previous exercise by modifying the model formula rather than restating the temperatures.

[16] The number of web sites grew rapidly once the world wide web was invented in 1993.  Use the “Number of web sites” dataset above to:

a. Identify the input and output variables.

b. Restate the date variable in months since January 1993.
c. Use a spreadsheet to make an appropriate graph and label the axes. (hand-labeling is okay)
d. Use the exponential-model spreadsheet to find an exponential model that fits the data well and state its equation.

e. State the growth rate per month implied by this model.

f. How many web sites does this model predict for Dec 1997?
[17] The population of the world for the first six decades of the twentieth century is given in the “World Population Growth” dataset above.
a. Identify the input and output variables.

b. Modify the data to restate the date variable in years since 1900. 
c. Use a spreadsheet to make an appropriate graph and label the axes. (hand-labeling is okay)
d. Use the exponential-model spreadsheet to find an exponential model that fits the data well and state its equation.

e. State the growth rate per year implied by this model.

f. What world population does this model predict for 2000?

[18] Solve the previous exercise by modifying the model formula rather than restating the date variable.

[19] For the “Stopping Distances” dataset above giving the stopping distance of a car at various speeds,
a. Identify the input and output variables.

b. Fit an exponential model to the data and state the model formula.

c. Fit a quadratic model to the data and state the model formula.

d. Which model better fits the data?  How can you tell?

e. Use the better model to predict the stopping distance at 80 mph.

f. What stopping distance does the model predict for zero mph?  Does this prediction make sense?

[20] For the “UT Austin Tuition” dataset shown above,
a. Identify the input and output variables.

b. Fit a linear model to the data and state the model formula.

c. Use the linear model to predict 2006 tuition.

d. Fit an exponential model to the data and state the model formula.

e. Use the exponential model to predict 2006 tuition.

f. State which model you think is better for the tuition dataset, and what arguments you could make to convince someone else that your conclusion is correct.
[21] What percentage growth or decay rate is implied by these exponential models?

[a]  y = 443.2 ( (1.07)x        [b] y = 0.134 ( (1.025)x          [c] y = 5.3 ( (0.97)x
[22] What percentage growth or decay rate is implied by these exponential models?

[a]  y = 3.52 ( (0.94)x          [b] y = 69 ( (1.11)x                 [c] y = 0.825 ( (1.075)x
[23] What prediction does the model y = 3.52 ( (0.94)x make for:  [a] x = 10    [b] x = 3.178   [c] x = 0
[24] What prediction does the model 443.2 ( (1.07)x make for:  [a] x = 10    [b] x = 3.178   [c] x = 0
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The formula in C3 is now “=$G$4*(A3-1992)+$G$3” 


























The formula in C3 is now “=$G$3*(1+$G$4)^(A3-1992)
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This graph and its residual values below both show that even the best linear model fits this data poorly.
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y�
model�
deviation�
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Exponential growth and decay are mirror images
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