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Topic U – Modeling, Part IV.  Power Functions and Using Logarithmic Graphs

Objectives:

1. Be able to evaluate “power function” modeling formulas that give output values proportional to a constant power of the input value.

2. Be able to find the best-fit power and scale parameters implied by a dataset.

3. Be able to find the best-fit inverse function of data with a power-function relationship.

4. Be able to use common logarithms to compress the range of one or both variables in a relation​ship so that a more informative graph can be produced of data with a large dynamic range.

5. Be able to create semi-log and log-log graphs of data, to determine when such graphs are appropriate, and to read data that is presented in such graphs.

6. Be able to determine whether data variables have an exponential relationship by examining a semi-logarithmic graph of the data points.

7. Be able to determine whether data variables have a power-function relationship by examining a log-log graph of the data points.

Overview

 Some situations exist in which all the input or output values are positive, but the ratio between the largest and smallest values (the dynamic range) is very large.  This usually makes it impossible to for a regular graph to show the details of the shape of the relationship.  Logarithms are a standard mathematical tool that has been developed to address this issue.

Graphing software usually supports modes in which one or both of the axes are graphed with logarithmic spacing rather than the usual uniform spacing.  Such graphs can display a much wider range of values, and are often used in application areas that produce data with a large dynamic range.

Because of the way exponential and power functions make use of exponents in their formulas, appropriate logarithmic graphs of data with such relationships form straight lines, which are very easy to recognize and use for estimation.  This also makes it easy to detect outliers in such relationships.


In addition to being a function that can be directly used in modeling, Logarithms have special connections to two other modeling functions: the exponential function we have already discussed and the power function that often arises as a result of dimensional relationships.  This is be because the logarithm of an exponential function is a straight line, and a power function graphs as a straight line if the logarithms of both the x and y values are used. 


Graphs are often provided with semi-logarithmic and logarithmic scales to take advantage of these relationships, which make it easy to recognize when data has an exponential or power-function relationship.  Spreadsheet can produce such graphs automatically.
Section 1: Dimensional relationships – the Power model 
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Processes in which the relationship of input to output depends on volume, area, or distance often can be modeled by formulas in which output is computed by raising the input variable to a particular exponent power, then multiplying the result by a scaling factor.  This differs from the earlier exponential formula because here the exponent is a parameter rather than being the input variable x, while x is used as the base rather than the exponent.  

In addition to obvious relationships such as those between size, area, and volume for geometric shapes, power-function models are useful for many situations where the geometry involved is indirect.  The rate at which animals use food, for example, depends on size based on interactions between weight (which grows rapidly with size) and breathing rate (which slows down), resulting in power-function relationships with fractional powers.  The concentration of a fixed amount of a chemical dissolved in water has the reciprocal power-function relationship (where the power equals –1) to the amount of water.  If the power equals exactly 1, the power function is a straight line through the origin; if the power is exactly 2, the power function is a parabola whose vertex is at the origin.
The power parameter may have any value, including fractional and negative numbers.  However, for fractional powers (such as the x0.5 for square roots) power functions are well-defined only for values of x that are greater than or equal to zero.  The scale parameter can be any value, although it is usually positive (a zero value will make all output values zero and a negative value will flip all values around the x axis); the effect of the scale parameter is to uniformly stretch or shrink the graph vertically.
	Power models can take many shapes, depending on the value of the power.
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Examples of power-formula models:

y = 122.3 x0.667 predicts the surface area of a steel ball in mm2 based on its mass in grams.

y = 0.018 x3 predicts the weight of a cantaloupe in pounds based on its diameter in inches.

y = 2×108 x-1 predicts daily visitors to web sites based on the order of popularity of the sites.

y = 1.80 x0.667 predicts a planet’s orbit radius in miles based on the length of its year in days.


The process of fitting a power model to a dataset is the same as for the other models you have studied — put the data into a worksheet in Models.xls, then use Solver to find the best-fit parameters.  But in this case you will not have a preset worksheet template in which C3 already contains the right kind of formula.  Instead, you will need to make a modeling worksheet yourself, or modify a copy of one of the ones you used earlier in Models.xls.  The description below assumes that you will use the same row and column numbers as in Model.xls for the same kind of purposes, although you may vary them as long as you do so consistently.
To make a worksheet to fit the 
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 formula to data, we will make these changes (also put appropriate labels above or beside the active cells to help remember how they are being used):

· Decide on cells to use for each parameter.  We will use G3 for scale and G4 for power
· Put the following formula into cell C3 as the model formula: =$G$3*A3^$G$4  


    (This is the only step that is different between different types of model.)
· Put the formula =B3-C3 into cell D3, to compute the Data-Model deviation.

· Put the formula =D3^2 into cell E3, to compute the squared deviation.

· Put the formula =SUM(E3:E100) into H8 (or some other unused cell).
· To promote prompt convergence in the search process, set the initial values for the scale and power parameters so that the graph of the model roughly similar to the graph of the data (see note below). 
Now this modified worksheet is a power-function template that can be used to fit a power model in the same way as the Linear, Quadratic, or Exponential templates – add the data, spread the formulas in C3, D3, and E3 down to match the data, make a graph and adjust the parameters to make the model similar to the data, then use Solver to find the best-fit parameters by minimizing H8, the sum of squared deviations.

Optional: a systematic way to set approximate initial values for power-function model parameters


  [i] Set the power parameter equal to zero; this will make the model into a horizontal line at y = scale.

 [ii] Set the scale parameter equal to about the middle of the range of output values; the graph of the model will now pass through the data, with some data points above it and some below it.

[iii] If the data is increasing as x increases, set the power parameter to 1; otherwise set it to -1.

[iv] Repeat the sequence below until the graph of the model is roughly similar to the graph of the data:


[a] If the data is more curved than the model, double the power parameter; if less curved, halve it.



[b] If the data is all substantially smaller than the model (i.e., closer to the x-axis), double the scale parameter; if the data is all substantially larger than the model, halve the scale parameter.


 [v] Once the model is roughly similar to the data, use Solver starting with these parameter settings.
	Example 1:  
   [a] Use the dataset on the right to find a model formula for the length of a planet’s year in days based on its average distance from the sun in miles.  

   [b] Use that model to find year length for the dwarf planet Ceres, whose average distance from the sun is 256.1 million miles.
Solution approach:
   [a] Make a power-law spreadsheet as described above, then put the distance data into column A and the year-length data into column B (don’t copy the names).  Then use Solver to get the best-fit model.
	Planet

Distance (millions of miles)

Length of Year (days)

Mercury

36.1

88

Venus

66.7

226

Earth

92.6

365

Mars

140.8

687

Jupiter

481.8

4,332



	   [b] Once the model has been found, type the Ceres distance of 257.7 million miles into column A in the next row below the data (i.e., A11).  The model’s year-length prediction for Ceres will be in C11.

Answers: [a] The best-fit model is 
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    [b] The predicted year for Ceres is 1,680 days.



Both the square-root function y = x0.5 and the square function y = x2 are power functions.  For positive values of x they are also inverse functions, since the square root of the square of a number reproduces the original number (and conversely).  This occurs because the numbers 0.5 and 2 are reciprocals of each other.  This is true in general – the inverse of a power function is a different power function in which the new power is the reciprocal of the original one.
	Example 2:  
   [a] Use the data from Example 8 to find a good model for using the length of a planets year to predict its average distance from the sun.  

   [b] Use that model to find the average distance from the sun of the asteroid Eros, whose year is 643 days long.
Solution approach:
   [a] Make a power-law spreadsheet as described above, but this time put the distance data into column B and the year-length data into column A.  Then use Solver to get the best-fit model.
	Planet

Length of Year (days)

Distance (millions of miles)

Mercury

88

36.1

Venus

226

66.7

Earth

365

92.6

Mars

687

140.8

Jupiter

4,332

481.8



	   [b] Once the model has been found, add the Eros year length of 643 days into column A in the next row (i.e., A11).  The model’s prediction for Eros’s average distance to the sun will be in C11.

Answers: [a] The best-fit model is 
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                 [b] The predicted average distance for Eros is 134.4 million miles.


Section 2:  Compressing the range of values by using logarithms

Many types of measurements cover an extremely wide range of values.  An example is the energy released in earthquakes — there is a 100-billion-times difference between the energy of the smallest earthquake that a seismograph can measure and the largest ones that occur.  In chemistry, concentrations of hydroxyl ion can vary by more than 100 trillion times between strong alkalis and strong acids.

Thus the same dataset might contain the relatively big value 4,200,000,000, the intermediate one 3,100, and the relatively small one 0.00025.  In a regular graph of such a dataset, there is no scale that will show the data well — either the biggest number will be far off the scale at the top, or the middle number (which is less than a millionth of the big number) will be at the bottom and indistinguishable from the smallest number even though it is more than ten million times bigger.  

The numbers above can be expressed as 4.2×109, 3.1×103, and 2.5×10-4, a style called scientific notation because it is used by scientists who often need to deal with very large or very small numbers.  The idea of base-10 logarithms (also called “common” logarithms) carries this idea further by using decimal fractions in the exponents so that the initial number is not needed.  Since 4,200,000,000
[image: image9.wmf]@

109.623, we say that 9.623 is the logarithm of 4,200,000,000.  Similarly, the logarithm of 3,100 is about 3.491 and that of 0.00025 is about –3.602 (all numbers between 1 and 0 have negative logarithms).  So when using logarithms, the original range from 4,200,000,000 to 0.00025 becomes a compressed range from 9.623 to –3.602.  On this scale, the inter​mediate value of 3.491 (the logarithm of 3,100) can be easily distinguished from both of the other values.


This is how our sense of hearing works.  A whisper is a billion times less intense (in total energy into our ears) than a rock concert.  In order to handle this range of input, our senses have evolved so that our perceived response to a stimulus is approximately proportional to the logarithm of its intensity.  The use of logarithmic scales in mathematics and technology is a way of using this same tactic to deal with any range of numerical values where the ratio of the largest to the smallest (the dynamic range) is large.


The base of a logarithm does not have to be 10 (although only base-10, or “common”, logarithms are used in this course and in most application areas).  The non-10 bases for traditional logarithmic scales are typically those that make the results into convenient numbers (e.g., between 2 and 10 for earthquakes, between 1 and 6 for star brightness).  A base of 2 is used in music because notes with a frequency ratio of 2 are harmonious.

Examples of logarithmic measurement scales
· Richter scale for earthquakes – each increase of one level means 32 times more energy

· pH for acidity/alkalinity – each increase of 1 in pH means 10 times more hydroxyl ions.

· Brightness of stars – each increase of 1 in stellar magnitude means a star is 2.51 times dimmer

· Sound – on the decibel scale, each bel (= 10 decibels) means the sound is 10 times more intense
· Music octaves – each one-octave increase in musical pitch means that vibration frequency doubles

[Optional additional information about logarithm bases:  Any positive number except 1 can be used as a logarithmic base, resulting in logarithms that differ from “common” base-10 logarithms by a ratio equal to the common logarithm of the base chosen.  Base-2 “binary” logarithms (3.322 times larger than common logarithms) are used mainly in computer-related fields.  “Natural” logarithms (2.303 times larger than common logarithms) are used in calculus and based on the special number called e (approximately 2.71828).  Natural logarithms are symbol​ized as “LN” on calculators, and calculated with the LN function in spreadsheets.  On calculators, the LOG key computes base-10 logarithms, but spreadsheets use the LOG10 function for that purpose and use the LOG function only when the user is specifying which base to use.  Thus the spreadsheet formula “=LOG(16,2)” evaluates to 4.  This specify-the-base spreadsheet LOG function is useful for answering questions such as “How many years would it take for an investment at a 5% growth rate to double?”  Since mathematically this is the same question as “What value of x will make (1.05)x equal to 2?”, the answer 14.2 years is computed by the formula “=LOG(2,1.05)”.]

Logarithms are useful when the measurements in a dataset have a wide range of values, all greater than zero.  Positive values are needed because only positive numbers have logarithms, since no exponent of 10 exists that gives a negative or zero result.  Use of a negative value in the LOG10 spreadsheet function, or with the LOG key on a calculator, will give an error message.  
The logarithm values themselves can be zero, in which case the original value is exactly 1, or negative, in which case the original value is less than 1 (e.g., -2 is the logarithm of 0.01 = 10-2). 
Example 1: For each of the values listed below, use reasoning to answer these two questions: [i] Does the value have a logarithm greater than 0?  [ii] Does the value have a logarithm that is a whole number?  

[a] 582     [b] 10,000     [c] 0.23     [d] -48    [e] 6.2×1026     [f] 493.57285     [g] 0.001
Solution approach:

The whole-number powers of 10 are obvious: 101 = 10, 102 = 100, 103 = 1000, etc., as are the whole-number negative powers: 10-1 = 0.1, 10-2 = 0.01, 10-3 = 0.001, etc.  The logarithm of any of these numbers is simply the corresponding exponent of 10.  Also, 100 = 1 (any value to a zero power equals one), so numbers greater than 1 have positive logarithms and numbers less than one have negative logarithms.
Answers:


[a] The logarithm of 582 is positive and is not an integer.


[b] The logarithm of 10,000 is positive and is an integer.


[c] The logarithm of 0.23 is negative and is not an integer.


[d] This number -48 is not positive, and therefore it does not have a logarithm.

[e] The logarithm of 6.2×1026 is positive and is not an integer.


[f] The logarithm of 493.57285 is positive and is not an integer.


[g] The logarithm of 0.001 is negative and is an integer.
Example 2: For each of these logarithms, which two integer powers of 10 is the original value between?



[a] 1.634     [b] 4.195     [c] -2.593     [d] -0.345     [e] 0.683
Answers:


[a] 101 = 10 and 102 = 100 (since 1.634 is between 1 and 2).

[b] 104 = 10,000 and 105 = 100,000 (since 4.195 is between 4 and 5).

[c] 10-2 = 0.01 and 10-3 = 0.001 (since -2.593 is between -2 and -3).

[d] 100 = 1 and 10-1 = 0.1 (since -0.345 is between 0 and -1).

[e] 100 = 1 and 101 = 10 (since 0.683 is between 0 and 1).
Finding logarithms of values, or values from their logarithms

In spreadsheets, we compute the base-10 logarithm of a number with the LOG10 function.  Thus a cell containing the formula “=LOG10(3100)” will display the result 3.491361694.  Note that logarithms, like trigonometric functions, almost always give values that are non-repeating decimals, so the logarithm values used are approximate rather than exact.  The exception is for whole-number powers of the base, so that the base-10 logarithm of 1,000,000 is exactly 6, and that of 0.001 is exactly –3.


Since a logarithm is an exponent, you can always get back the original value by using the logarithm value as an exponent for the base.  Thus 103.491 (the formula “=10^3.491” in a spreadsheet) will evaluate to nearly 3100, although there will a small difference due to rounding-error propagation because 3.491 is a rounded-off version of the logarithm.  Most calculators have a LOG key that has the same effect as the LOG10 spreadsheet function.  The inverse function for a calculator’s LOG key is 10x, which coverts a base-10 logarithm back to the original value.

Example 3:  Find the common logarithms of these numbers, to three decimal places: 
[a] 48,300      [b] 2       [c] 0.055      [d] 7.2       [e] 2.6×1013        [f] 1.9×10-5
Solution approaches (you can use either one):


[i] With a calculator, enter the value, then press the LOG key to see the logarithm.  Use the EE or EXP key to enter the exponent of the numbers stated in scientific notation.

[ii] In a worksheet, enter a LOG10 formula with the value in parentheses, such as “=LOG10(7.2)”.  The numbers in scientific notation can be entered in “E format” – in the case as “2.5E13” and “1.9E-5”; you may wish to use the Format > Cells option to covert the format of result to Number or General.
Answers:    [a] 4.684       [b] 0.301       [c] –1.260       [d] 0.857       [e] 13.415       [f] –4.721

Example 4: Find the values, to three significant digits, which have these numbers as logarithms:

[a] 2.321      [b] –2.763        [c] 0.632      [d] –12.485        [e] 5.364       [f]26.931
Solution approaches (also remember to round to three significant digits):


[i] With a calculator, enter the logarithm, then press the 10x key to see the value.


[ii] In a worksheet, enter a formula with the logarithm as the exponent of 10, such as “=10^2.321”.

Answers:   [a] 209       [b] 0.00173       [c] 4.29       [d] 3.27×10-13       [e] 23,100       [f] 8.53×1026
Section 3:  Logarithmic graphs
Data that follows an exponential model is particularly well suited to logarithmic compression, because in that case the graph of the logarithms of the output values will form a straight line.  Also, exponential data that covers several half-lives or doubling times will be more easily examined in the logarithmic form.


The display advantages of the logarithmic graph can be combined with the convenience in the original graph of having the scale on the left in the same form as the data.  This is done with semi-log graphs, in which the logarithmic graph is displayed but the numbers shown in the y scale on the left are original, pre-logarithm values.  The horizontal lines and numbers labeling them are placed at the vertical position that matches the corresponding logarithm.
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To make a semi-log graph, first make a regular graph, then format the y axis: 
[i] click on the vertical scale to select it, 
[ii] use Format > Selected Axis to display the Format Axis dialog box, 
[iii] click on the Scale tab to show the axis settings, 
[iv] put a check in the Logarithmic Scale box near the bottom.
	Example 5:  Make semi-log graphs of these three datasets.
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	Example 6: For this exponential dataset, make a graph of the logarithms of the y data values and use that graph to estimate what y value is to be expected for an x value of 65.

	Solution:

     [i] Copy the data to a blank worksheet, putting x values in column A and starting the numbers in row 3.  Then add a third column of logarithm values by setting cell C3 to “=LOG10(B3)” and spreading that formula down beside all the data rows.

    [ii] Now make a scatter plot of columns A and C (but not B).  This will plot x on the horizontal axis against the logarithm of y on the vertical axis, forming a straight line.

  [iii] By finding what place on that line is above the x=65 position, we can estimate that the logarithm of y for that case is about 2.8.  By evaluating 102.8 (with either a calculator 10x key or the “=10^2.8” spreadsheet formula), we find that the answer is about 630.
	x

y

0

26

10

69

20

181

30

482

40

1,279

50

3,393

60

9,002

70

23,885
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	Example 7: One of these datasets has an exponential-growth pattern, while the other has a quadratic pattern (i.e., part of a parabola) whose shape is different but close enough that it is difficult to tell just by looking at the graphs.  Use graphs of the logarithms of the y values to identify which dataset is exponential.
Solution:  For each dataset, copy the data to a worksheet, add a third column that shows the logarithms of the y values, and make a scatter plot of the x values and those logarithms.  Examine the two graphs (copies shown below) to see which one is a straight line, indicating that its original data was exponential.  The graphs show that dataset B is exponential and dataset A is not exponential.
	Dataset A 
x

y

0

3.5

2

4.1

4

6.1

6

9.3

8

13.7

10

19.5

12

26.5

14

34.9

16

44.5

18

55.3

20

67.5

22

80.9


	Dataset B

x

y

0

3.6

2

4.8

4

6.4

6

8.4

8

11.1

10

14.7

12

19.5

14

25.8

16

34.1

18

45.0

20

59.6

22

78.8
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Model-fitting using logarithms:  It is possible, and sometimes useful, to fit models to the logarithms of the output values in a dataset, rather than to the output values themselves.  For example, a linear model might be fit to the logarithm of data that has an exponential pattern.  When this is done using minimization tools such as Solver, however, note that what is minimized is the standard deviation of the logarithms, not of the original values.  In the case of logarithms, this has the same effect as minimizing relative standard deviation.

Log-log graphs:  In situations where all x and y values are positive but there is a large dynamic range for both variables, it can help to use the logarithms of x values as well as for y values.  A graph where this is done is called a “log-log” graph.  On log-log graphs, straight lines indicate power-function relationships (in contrast to the exponential relationship indicated by straight lines on semi-log graphs).  The slope of the line (0.5 on the graph of logarithms, below center) matches the power parameter in the model, and the intercept of the line (1.44 below) is the logarithm of the scale parameter 27.3.
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	Example 8: Use log-log graphs of each of these two datasets to determine whether their data follows a power-function pattern.
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Answer: The straight-line log-log graphs show that both datasets come from power-functions (a negative power for A, a positive power for B).
	Dataset A

x

y

1.06

63.95

1.50

48.52

2.12

36.80

2.99

27.91

4.22

21.17

5.96

16.06

8.42

12.18

11.90

9.24

16.80

7.01

23.74

5.32

33.53

4.03

47.36

3.06

66.90

2.32

94.50

1.76


	Dataset B

x

y

1

2.75

2

7.78

3

14.29

4

22.00

5

30.75

6

40.42

7

50.93

8

62.23

9

74.25

10

86.96




Using other functions of the output values:  There are some situations in which it is convenient to apply other functions to the y data so that the result is close to a straight line.  For example, the power function y = x2 can be made linear by taking the square root of the y values.  This tactic was used more often before computers were widely available to fit nonlinear formulas, but such “linerarizations” are still used in some areas because people are very good at judging the straightness of lines and at using linear graphs for interpolation and extrapolation.  You can tell when an axis has been transformed in this way because the gridlines of the graph will be non-uniform in spacing, like those of semi-log graphs.

Exercises
Part I.  Repeat the Examples 1-8
Part II.

[9] State the logarithms of these numbers, to three decimal places:


[a] 452.6       [b] 0.2       [c] 1,000       [d] 4.5×1015       [e] 0.00724       [f] 6.4×10-8       [g] 7.66
[10] State the logarithms of these numbers, to three decimal places:


[a] 15,250      [b] 0.0001      [c] 1.4×10-5      [d] 1.11      [e] 200      [f] 7.5×1012      [g] 0.000215
[11] What values have the following logarithms (round answers to three significant digits):


[a] 3.526      [b] 0.01      [c] -2.769      [d] 10      [e] -0.168      [f] 5.728      [g] 0

[12] What values have the following logarithms (round answers to three significant digits):


[a] -2      [b] 1.592      [c] 5.923      [d] -4.511      [e] -1.735      [f] 0.301      [g] 23.301
[13] Which of these values has a logarithm greater than 1?


[a] 45.8      [b] 8.3      [c] 195,680      [d] -15.2      [e] 0.783      [f] 5.4×1012      [g] 10

[14] Which of these values has a logarithm less than 1?


[a] 6.8      [b] 55.5      [c] 4.2×109      [d] 0.00002      [e] 75      [f] 9.27×10-3      [g] 10

[15] Which of the graphs below indicate that the corresponding dataset follows an exponential pattern?
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[16] Which of the graphs above indicate that the corresponding dataset follows a power-function pattern?
	[17] Use a semi-log graph to show whether dataset A is exponential.
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	Dataset A

x
Y
1

275.3

2

68.8

3

30.6

4

17.2

5

11.0

6

7.6

7

5.6

8

4.3

9

3.4

Dataset B

x
y
20

4

40

16

60

36

80

64

100

100

120

144

140

196

160

256

180

324


	


[18] Use a semi-log graph to show whether dataset B is exponential.

[19] Use the Exercise 17 graph to interpolate an estimated value for x = 1.5.

[20] Use the Exercise 18 graph to interpolate an estimated value for x = 170.

[21] Use a log-log graph to tell if dataset A approximates a power function.

[22] Use a log-log graph to tell if dataset B approximates a power function.
[23] Scientists have found that the total energy requirements of animals increase somewhat more slowly than body size.  For example, a 1.2-pound mongoose requires 47 kilocalories per day, a 10-pound fox requires 240, a 22-pound bobcat requires 440, a 100-pound wolf requires 1350, a 300-pound lion requires 3100, a 400-pound tiger requires 3800, and a 700-pound polar bear requires 5900.  


[a] What model is appropriate for predicting energy requirement from weight?  (You will need to decide on the type of model, then find the best-fit parameters to this data for that type.)


[b] What daily energy requirement can be expected for a 45-pound lynx?

	[24] Fit a power-function model to the infant data shown above, using age as the input variable and average weight as the output variable.  

[a] State the best-fit scale and power parameters in an appropriate model formula.

[b] Is this model a good fit to the data?

[c] Compute the predicted average infant weight for an age of 20 months.

[25] Fit a power-function model to the infant data shown above, using average weight as the input variable and age as the output variable.  

[a] State the best-fit scale and power parameters in an appropriate model formula.

[b] What is the relationship of the power parameter in this model with the power parameter of the model found in the previous problem?  Why?
	Infant data averages 

for Exercises 24-28
Age
(months)
Weight
(pounds)
Length

(inches)

3

13.0

24.0

6

17.2

26.7

9

20.3

28.6

12

22.2

30.0

15

24.0

31.4

18

25.3

32.5

21

26.6

33.6

24

27.8

34.5

(US Natl Cen Health Stat)




[26] Fit a power-function model to the infant data shown above, using age as the input variable and average length as the output variable.  

[a] State the best-fit scale and power parameters in an appropriate model formula.

[b] Is this model a good fit to the data?

[c] Compute the predicted average infant length for an age of 20 months.

[27] Fit a power-function model to the infant data shown above, using average length as the input variable and average weight as the output variable.  

[a] State the best-fit scale and power parameters in an appropriate model formula. 

[b] Use the predicted average infant length for an age of 20 months (computed in section [c] of the previous exercise) as input to the model found in this exercise, producing as output a predicted infant weight for an age of 20 months.  What earlier exercise also predicted this quantity?  How well do the predictions match?

[28] Using the results of the previous exercise (without doing any more fitting), use a single computation to estimate what the best-fit power parameter would be for a model based on this data that predicts average length from average weight.
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     The point halfway between the x=1 and x=2 data points has a y value that is about halfway between y=100 and y=200. 
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