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Foundations of Statistics – Frequentist and Bayesian 
 
 “Statistics is the science of information gathering, especially when the information arrives in little pieces 
instead of big ones.” – Bradley Efron 
 
This is a very broad definition.  How could we possibly come up with a structured way of doing this?   In 
fact, a variety of structures have been developed.   The purpose of this talk is to give you some 
understanding of more than one of these structures.   
 
If you had a statistics course in college, it probably described the “frequentist” approach to statistics.   A 
few of you might possibly have had a second or later course that also did some Bayesian statistics.   In my 
opinion, and in the opinion of many academic and working statisticians, statistical practice in the world is 
noticeably changing.   The courses for most undergraduates haven’t begun to catch up yet! 
 

Typical Conclusions 
 

 Frequentist Bayesian 
 
Estimation 

  
I have 95% confidence that the population mean is 
between 12.7 and 14.5 mcg/liter. 

 
There is a 95% probability that 
the population mean is in the 
interval 136.2 g to 139.6 g. 
 

 
Hypothesis 
Testing 

If 0H  is true, we would get a result as extreme as the 
data we saw only 3.2% of the time.   Since that is 
smaller than 5%, we would reject 0H  at the 5% level.  
These data provide significant evidence for the 
alternative hypothesis. 

The odds in favor of 0H  against 

AH  are 1 to 3.  
 

  
Those of you who have had statistics may recognize the first set of these as typical conclusions from 
frequentist statistics.  The second set are typical conclusions from a Bayesian perspective.   I think most 
of us would agree that the second set of conclusions are easier for most readers to understand. 
 
So why don’t we all do Bayesian statistics?   
 
Short answer:   There are two reasons. 

1. The calculations needed for Bayesian statistics can be overwhelming.   
2. The structure requires a “prior distribution” on the parameter of interest.   If you use a different 

prior you will obtain different results and this “lack of objectivity” makes some people 
uncomfortable.  

 
In the last twenty years or so, advances in computing have made it possible to do calculations that earlier 
would have been completely impractical.  This has generated a resurgence of interest in Bayesian 
methods and it is a rapidly growing field.  Mostly that hasn’t reached the undergraduate curriculum, 
especially the introductory courses.     Maybe some of you will be instrumental in making that happen in 
the next 20 years! 
 
My goal in this talk is to help you understand the basic philosophical differences between frequentist and 
Bayesian statistics.   My examples are quite simplified, and don’t do justice to the most interesting 
applications of these fields.   They are chosen to illustrate the mathematics used to derive these 
conclusions.   I encourage each of you to browse in some of the easier references, particularly those on 
the web, to see additional examples.   
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Frequentist Estimation – An Informal Introduction 
 
Example:  Mothers’ breast milk includes calcium.  Some of that calcium comes from the food the 
mothers eat and some comes from the mothers’ bones.  Researchers measured the percent change in 
calcium content in the spines of a random sample of 47 mothers during the three months of breast-feeding 
immediately after the baby was born.   We want to use these data to estimate the mean (average) percent 
of change in the bone calcium level for the population of nursing mothers during the first three months of 
breast feeding.   
 
From the data, we find that the sample mean is 3.6X = −  and the standard deviation is 2.5.   
 
Of course, our point estimate of the mean percent of change in the bone calcium level is –3.6.   Generally, 
however, we are also interested in some measure of variability.  For instance, we might want an interval 
estimator. 
 
In frequentist statistics, inferences such as this are based solely on the sampling distribution of the 
statistic.   Here the statistic is the sample mean.    
 
 To construct the sampling distribution of the sample mean when 47n = :   

1. Take all possible samples of size 47 from the population. 
2. For each sample, compute the sample mean, 47X . 

3. Consider the distribution of all those different values of 47X .  That is the sampling distribution of 

47X .   
 
We use some results from probability theory to say that, since 47n =  is a large enough sample, the 
distribution of 47X from a population with mean µ  and estimated standard deviation s  

•  is approximately normal,  
•  has mean equal to the mean of the original population  Xµ µ= , and 

•  has standard deviation which can be approximated by X
ss
n

= . 

 
So the sampling distribution for our 47X  is approximately normal, with mean equal to the mean of the 

original population and standard deviation approximated by 
2.5 0.365
47Xs = = . 

In such an approximately normal distribution, the area within two standard deviations of the mean is very 
close to 95%.    
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To form a confidence interval, we use the fact that 95% of the sample means in the sampling distribution 

are within two standard deviations of the actual mean µ  to justify computing an interval  2.0 sX
n

± ⋅ , 

which is 3.6 2.0 0.365 3.6 0.73− ± ⋅ = − ± . 
 
 
We interpret that statement: “We have 95% confidence that the actual mean µ  is in the interval between 
–4.33% and –2.87%.” 
 
 
Notice here that our conclusion is NOT a probability statement.  It is based on a probability statement, but 
since it is not a statement about a random quantity, it is not a probability.   The random quantities in this 
discussion are the individual X  values and all of the possible 47X  values.   The quantity µ  is not 
random.  It is the unknown mean of the population.    
 
 
In an elementary statistics class, when we teach this, we encourage students to think of the possibility of 
doing many different possible samples of size 47, find the 47X  for each one and then use that particular 
value to form a 95% confidence interval.  So we can find numerous different 95% confidence intervals.  
The 95% confidence means that, when we do this many, many times, approximately 95% of the resulting 
intervals will actually include the true population mean.  
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Bayesian Estimation – An Informal Introduction 
 
Example:   
I take a coin out of my pocket and I want to estimate the probability of heads when it is tossed.  I am only 
able to toss it 10 times.   When I do that, I get seven heads.  I ask three statisticians to help me decide on 
an estimator of p, the probability of heads for that coin. 

Case 1.  Sue, a frequentist statistician,  used  !p
X

= =
10

0 7. .   

Case 2.  Jose, who doesn’t feel comfortable with this estimator, says that he already has an idea that p is 
close to 0.5, but he also wants to use the data to help estimate it.  How can he blend his prior ideas and the 
data to get an estimate?  Answer:  Bayesian statistics. 
 
Jose makes a sketch of his prior belief about p.  He thinks it is very unlikely that p is 0 or 1, and quite 
likely that it is somewhere pretty close to 0.5.  He graphs his belief.   
 
Jose's drawing:     
                     
 
 
 
 
 
 
 
 
 
 
Then he notices that the graph corresponds to a particular probability distribution, which is Beta(5,5).  So 
this is called his prior distribution for p.   
Recall that, for a beta distribution with parameters a and b, we have these formulas for the mean and 
variance. 

Mean 
a

a b
=

+
           Variance 2( ) ( 1)

ab
a b a b

=
+ + +

 

Thus the mean is 
5

5 5
05

+
= .  and the variance is 

5 5
10 11

0 0227272

⋅
⋅

= . , so the standard deviation is 0.15.   

 
Then, by some magic! (i.e. Bayes Theorem), he combines the data and his prior distribution and gets that 
the distribution of p, given the data, is a Beta(12,8). This is called the posterior distribution of  p.   Using 
those same beta distribution formulas, this mean now is 0.6 and the variance is 0.01143, so the standard 
deviation is 0.107.     
  
 
 
 
 
 
 
 

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.0
p
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Jose's posterior distribution    Beta(12,8) 
 
 
 
 
 
 
 
 
 
 
 
Case 3:  Vicki, who is very sure that coins are unbiased, has a prior distribution like Jose’s, but much 
narrower.  There’s a much higher probability on values very close to 0.5.  She graphs her belief.  
Vicki's prior distribution: 

 
She notices that this corresponds to a particular probability distribution, which is Beta(138,138), so that is 
her prior distribution of p.   So the mean is 0.5, the variance is 0.0009, and the standard deviation is 0.03.  
Notice that her standard deviation is much smaller than Jose’s. 
 
Now, she also uses Bayes Theorem to combine the data and her prior distribution and finds that her 
posterior distribution of p is a Beta(145,141).  So her posterior mean is 0.507, variance is 0.0008709, and 
standard deviation is 0.0295.   
 
Vicki's posterior distribution.   Beta(145, 141)  
 

 
 
 
Jose and Vicki are both doing Bayesian estimation.  Both of them decide to use the  mean of the posterior 
distribution of the parameter as their estimator. 

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.0
p
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 Summary: 

Sue’s estimate of the probability of heads: 0.700 
Jose’s estimate of the probability of heads:  0.600 
Vicki’s estimate of the probability of heads: 0.507 

 
Now, Jennifer offers you a bet.   You pick one of these values.  She chooses one of the other two.  An 
impartial person tosses the coin 1000 times, and get a sample proportion of heads.  If that sample 
proportion is closer to Jennifer’s value, you pay her $25.  If it is closer to yours, she pays you $25.  Which 
value would you choose? 
 
Overview: 
 
Jose and Vicki are both doing Bayesian estimation.  But they get different answers.  This is one of the 
reasons that frequentist statisticians criticize Bayesian methods.  It doesn’t seem objective enough.  
Different people can get different estimates based on the same data, they say.  And of course, Jose and 
Vicki did get different estimators.  But, were they really using the same data?  Well, not if we consider 
data in the broad sense.  If their prior beliefs are considered data, then these are not based on the same 
data.  And, if their prior beliefs are not considered data, then we are back to frequentist statistics.  Would 
any of you be willing to take up Jennifer’s bet and choose Sue’s frequentist statistics estimator of 0.7?  (If 
so, I’ll be willing to bet with you.) 
 
What are some of the difficulties in the Bayesian approach? 
 
1.  Quantifying prior beliefs into probability distributions is not simple.  First, we haven’t all thought 

much about our prior beliefs about most things, and, even if we have some beliefs, those aren’t 
usually condensed into a probability distribution on a parameter. 

2.  We might not agree with colleagues on the prior distribution. 
3.  Even if we can find a formula for the distribution describing our prior beliefs about the parameter, 

actually doing the probability calculations to find the posterior distribution using Bayes Theorem may 
be more complex than we can do in closed form.  Until people had powerful computing easily 
available, this was a major obstacle to using Bayesian analysis. 

 
The Bayesian statisticians have some answers for most of this, which will become clearer as we develop 
the theory.  
 
Mathematical Theory: 
 
How do we do the mathematics to get the posterior distribution? 
Use Bayes Theorem, which is a theorem to “turn around” conditional probabilities. 

P A B
P B A P A

P B
( | )

( | ) ( )
( )

=
⋅

 

 
From our data, we get f data p( | ) , which can also be denoted as L p( ) .  We want h p data( | ) , which is 
the posterior distribution of p.  We also need g p( ) , which is our prior distribution of p.   
 
For theoretical purposes, (but we often manage to avoid using it), we also need the distribution of the 

data, not conditioned on p.  That means k data f data p dp
domain

( ) ( | )= ∫ , or, if the distribution of p is 
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discrete, k data f data p
p

( ) ( | )=∑ .  In these, we are integrating or summing over all possible values of 

p.  
 
So, using Bayes Theorem, we get  

h p data
f data p g p

k data
( | )

( | ) ( )
( )

=
⋅

  

 
Now, since k data( ) is not a function of p, and since we are going to fix our data, then the denominator is 
a constant, as we calculate h p data( | ) .  Since the only difference that a constant multiple makes in 
specifying a probability distribution is to make the density function integrate (or sum) to 1 over the entire 
domain, then we can know the form of the distribution even before we bother with computing the 
denominator.  And, once we know the form of the distribution, we could figure out the constant multiple 
just by determining what it would take to have the integral over the entire domain be 1.  So, in practice, 
people use this form of Bayes Theorem, where the symbol ∝  means “proportional to”, i.e. “is a constant 
multiple of” and we call the right hand side of this the “unnormalized posterior density”.   

( | ) ( | ) ( )h p data f data p g p∝ ⋅    
In fact, when we do problems using this, we often neglect the constant multiples (considering p as the 
variable and the rest as constants) on both f data p( | )  and g p( ) , since if we are going to gloss over one 
constant multiple, then there is little point in keeping track of the rest until we start trying to really get the 
constant multiples figured out.  And then, when we do need to find the constant multiple, if we recognize 
the kernel of the distribution (the factors which include the variable)  as one of our standard distributions, 
we can use that to determine the constant multiple.    
 
When you read about Bayesian statistics, you’ll see the statement that Bayesians use the data only 
through the likelihood function.  Recall that  the likelihood function is just the same as the joint density 
function of the data, given p, reinterpreted as a function of p.   ( ) ( | )L p f data p=  

h p data f data p g p L p g p( | ) ( | ) ( ) ( ) ( )∝ ⋅ = ⋅  
 
Back to the example: 

Here, 
10

(1 ) 7 3

1

( ) ( | ) (1 ) (1 )i ix x

i

L p f data p p p p p−

=

= ∝ − = −∏  

which is from a binomial distribution, in “unnormalized form”, i.e. without the constant multiple, 
considering it as a function of p and defined on [0,1]p ∈ .   
 

Also, for Jose, his prior distribution is g p p p p p( )
( )

(5) (5)
( ) ( )=

⋅
− ∝ −− − − −Γ

Γ Γ
10

1 15 1 5 1 5 1 5 1  

so h p data f data p g p p p( | ) ( | ) ( ) ( )= ⋅ ∝ −+ − + −7 5 1 3 5 11  
Since the domain of h is all real numbers between 0 and 1, it is a continuous distribution, so it fits the 
form of a Beta distribution, with parameters 12 and 8.  Thus, Jose has a posterior distribution on p which 
is  Beta(12,8), as we said before, and is used to calculate his estimator, which is the mean of the posterior 
distribution on p.     
 
We calculate Vicki’s posterior distribution on p in exactly the same manner.   
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We can use these posterior distributions on p to make probability statements about p as well.  Typically 
Bayesians would compute a HPD (highest posterior density) interval with the required probability.   
 
Back to the Theory: 
 
Since we are using this theory to find a posterior distribution on the parameter, we can use that 
distribution to find probability intervals for the parameter.  In a frequentist statistics course, we learn that 
parameters aren’t random variables, however, so when we find intervals for parameters, we called them 
confidence intervals to distinguish them from probability intervals.  The major conceptual difference 
between Bayesian statistics and frequentist statistics is that, in Bayesian statistics, we consider the 
parameters to be random, so one consequence of that is that we can write probability intervals for 
parameters.   
 
 
 
 
 
 
 
 
 
 
Back to the Overview:  (How they chose their prior distributions) 
 
No doubt it will have occurred to you that it was very convenient that both Jose’s and Vicki’s prior beliefs 
about the parameter fit into a beta distribution so nicely.  It was particularly convenient since the data, 
given the parameter, fit a binomial distribution and so the product of those had such a simple form.  
Surely, you say, that doesn’t always happen in real life!  Probably not. 
 
But, in real life, most people don’t have fully developed prior beliefs about most of the interesting 
questions.  In fact, you can usually elicit from a person what the average (mean) of their prior belief is, 
and, after a fair amount of coaxing, you might be able to get their standard deviation.  There are 
convenient forms for prior distributions in a number of cases, based on the distribution of the data.  These 
are called “conjugate priors”.  If the data is binomial, the conjugate prior is a beta distribution.  If the data 
is normal, the conjugate prior is a normal distribution.   So, in practice, you often elicit the mean and 
standard deviation of a person’s prior belief, notice what form the distribution of the data has, and decide 
to use a conjugate prior.  You then use the mean and standard deviation to solve for the parameters in 
your conjugate prior.    
 
That’s how Jose and Vicki did the problem here.  The data was binomial, so they needed a beta prior 
distribution. Recall that, for a beta distribution with parameters a and b, we have these formulas for the 
mean and variance. 

Mean 
a

a b
=

+
           Variance 2( ) ( 1)

ab
a b a b

=
+ + +

 

Each of them wanted a mean of 0.5, so they needed the two parameters to be the same.  Then, the smaller 
that they wanted the standard deviation, the larger the parameters had to be.  So each decided on a 
standard deviation that seemed to reflect his(her) beliefs.  Jose chose 0.15 and then wrote 

( . )
( ) ( )

015
2 2 1

2
2=

⋅
⋅ +

a a
a a

 and solved for a.  He reduced this to a linear equation and found a = 50556. .  

Since his standard deviation was only an approximation, it seemed most reasonable to just round this off 

Free the Parameters! 
 

-- Bayesian Liberation Front 
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to use integer parameters.  Vicki did a similar calculation, starting from her prior belief, which she 
characterized as mean 0.5 and standard deviation 0.03.     
 
Notice that, when we look at the forms of the data distribution and the prior distribution, they are similar, 
and so Jose’s prior distribution was the equivalent to starting your problem with 4 heads and 4 tails.  
Vicki’s was equivalent to starting with 137 heads and 137 tails.   
 
Exercise:   
How would your prior belief compare with Jose’s or Vicki’s?  Decide on a mean and standard deviation 
that reflect your beliefs.  Then compute which beta distribution reflects those beliefs.  Then compute your 
posterior distribution, based on your prior and the data.  What is the mean of your posterior distribution?  
That is your Bayesian estimate for p, using a conjugate prior distribution that best fits your beliefs.  
Would you rather make a bet on that, or on one of the three estimates given here? 
 
Perhaps you fall at one of the extremes – either that you believe p = 05.  with a standard deviation of 0, 
or that you have no prior belief about p at all, and so want to go entirely by the data.  The Bayesian 
method can accommodate both of those.  In the former case, Bayes Theorem will give you the same 
posterior distribution as the prior distribution – the probability of zero elsewhere than 0.5 wipes out any 
other possibility, even from the data.  For problems of the latter sort, Bayesians might use a “flat prior” 
which gives equal probability to all possible values of the parameter.    
 
Back to the Overview: 
 
Everyone is a Bayesian in some situations.  I don’t think I could find anyone to actually place a bet on the 
estimate of 0.7 in the example.  So does that mean that we are all really Bayesians, and there is no point to 
learning frequentist statistics?   
 
Of course, the basic issue in this example is that we had a quite small set of additional data and most of us 
feel that we have quite a lot of prior information about whether a coin is likely to be fair.   It is an 
example “made to order” to make frequentist analysis look bad.   In other situations where prior 
information is not agreed upon, then Bayesian analysis looks less attractive. 
 
How do Bayesians deal with these issues? 
 
The main criticism of Bayesian analysis is that it is subjective because the conclusion depends on the 
prior distribution and different people will have different prior distributions.   
 
One approach to counter the criticism of subjectivity is to use “flat priors” which give equal weight to all 
possible values of the parameter.   This is a very common approach in contemporary Bayesian methods.   
There are some complications here.  One is that, when the parameter space is infinite (e. g. the whole real 
line) then a flat prior is not actually a distribution because it has an infinite integral rather than integrating 
to 1.  Another complication is that we may be interested in a function of the parameter rather than the 
parameter itself, and whether you take a flat prior on the parameter or on the function of the parameter 
makes a difference in the result.     Nevertheless, much work has been and is being done in this area.   
Some people call this “objective Bayesian analysis.”  The general term is “noninformative priors” and 
some names of these types of prior distributions are default priors, Jeffrey’s prior, maximum entropy 
priors, and reference priors.    
 
Many Bayesian statisticians consider “subjective Bayesian analysis” to be the heart of the Bayesian 
method and work in areas where it is feasible to specify prior distributions reasonably well.   Among 
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other things, they have developed techniques for eliciting such priors.  (That is a harder task than it might 
appear at first glance!) 
 
Another approach, called “robust Bayesian analysis” works with “informative” priors but allows for 
a family of prior distributions and a range of possible priors in the analysis, and so avoids some of the 
problems of trying to be quite specific.   It is not unusual for a group of researchers to be able to agree on 
a reasonable range of possible values for the parameters in the prior distribution and so this removes some 
of the objection to the subjectivity. 
 
“Empirical Bayes” is a technique that allows one to use data from somewhat similar situations to 
“borrow strength” and produce better estimators in the individual situations.    
 
Computation: 
 
Perhaps it has occurred to you that when we use a prior distribution other than a beta distribution on this 
problem, we can certainly write an expression for the posterior density as we did here, but actually doing 
any calculations with this density function, such as finding the mean, variance, or any probability 
calculations could be very difficult in general if the posterior density wasn’t one of our usual 
distributions.     
 
There are many functions which can’t be integrated in closed form and so numerical techniques are 
needed.   In high-dimensional problems, numerical integration is an even more complicated problem than 
in low-dimensional problems.  Markov Chain Monte Carlo (MCMC) techniques were introduced in the 
late 1980’s and use a computationally-intensive simulation method to replace exact integrals.  The aim of 
MCMC is to use simulation to draw a large sample from the full posterior distribution and, using that 
sample, estimate the needed values from the posterior distribution.  Some of those are means, medians, 
probability intervals, etc.  There are several approaches to MCMC.    
 
What does the statistics community say? 
 
When I was in graduate school in the 1970’s and 1980’s, we discussed the “Bayesian-frequentist” 
controversy.   People took sides and made impassioned arguments.   Most graduate schools had no 
courses involving Bayesian statistics and few courses mentioned it.   My advisor was working in 
empirical Bayes areas and I learned various interesting things, such that insurance companies had been 
using some of these estimators since the early 1900’s without any formal proof that they were good 
estimators.   Why do you suppose it was the insurance companies in particular? 
 
In the 1990’s to now, most of the graduate courses don’t mention Bayesian statistics.  It is becoming more 
common for graduate schools to have one or two courses in Bayesian methods.   From the leading 
theoretical statisticians, I hear “one should have many techniques in your ‘toolkit’ and use whatever ones 
are appropriate for the particular problem.”  One such person is Bradley Efron, the current President of 
the American Statistical Association.  I found a couple of interesting articles of his on the web and those 
are listed at the end of this handout.   
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Summary: 
 
Why should a teacher of only elementary statistics care about any of this?   Obviously you are unlikely to 
teach from a textbook using the Bayesian approach anytime soon.    
 

•  Intellectual curiosity 
•  Understand statistics in journals, etc.  
•  Understand why students have such trouble with the underlying concepts of frequentist statistics 
•  Better understand what assumptions are and are not being made (and why) in the frequentist 

statistics you might teach. 
 
For a recap, in frequentist statistics, the parameters are fixed, although maybe unknown.  The data are 
random.   
 
In frequentist statistical analysis, we find confidence intervals for the parameters.  In Bayesian analysis, 
the parameters are random and the data are fixed.  We find probability intervals for the parameters.   
 
In hypothesis testing, the frequentist statistician computes a p value, which is 0Pr( | )p value data H− = .  
But the Bayesian statistician computes  Pr( | )H data0 .    
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A Probability Problem 
 
Some elementary statistics courses do include a brief discussion of Bayes Theorem.   The following is a 
kind of example that makes an impression on students because the result is surprising and it clearly 
relevant to real life. 
 
 
 
Enzyme immiunoassay (EIA) tests are used to screen blood for the presence of antibodies to HIV, the 
virus that causes AIDS.  Antibodies indicate the presence of the virus.  The test is quite accurate, but, as 
all medical tests, not completely correct.   Following are the probabilities of both positive and negative 
results for persons who have the antibodies (denoted A) and for persons who do not have the antibodies.  
It is also known that about 1% of the overall population has the antibodies.   
 

( | ) 0.9985
( | ) 0.0015
( | ) 0.0060
( | ) 0.9940

P A
P A
P not A
P not A

+ =
− =
+ =
− =

 

 
When a person has a positive result on this test, how likely is it that they actually carry the antibodies? 
 
Do you recognize this as a case where Bayes Theorem is useful? 
 

 
 
( | ) ( )( | )

( )
P A P AP A

P
+ ⋅+ =

+
 

 
( | ) ( )( | )

( | ) ( ) ( | ) ( )
P A P AP A

P A P A P not A P not A
+ ⋅+ =

+ ⋅ + + ⋅
 

 
 

0.9985 0.01( | ) 0.627
0.9985 0.01 0.0060 0.99

P A ⋅+ = =
⋅ + ⋅

 

 
 

Does this surprise you?   It does surprise most students, I think.
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Additional Resources: 
 
These are generally organized, within categories, by the order in which I think you might want to pursue 
them, with the easiest first!  
 
Overview of Bayesian statistics: 
Stangl, Dalene, An Introduction to Bayesian Methods for Teachers in Secondary Education.  1999.  

http://www.isds.duke.edu/~dalene/talks/ncssm/sld001.htm 
Yudkowsky,  E.     An Intuitive Explanation of Bayesian Reasoning.  

http://yudkowsky.net/bayes/bayes.html 
Lee, P. M.  Bayesian Statistics, an Introduction.  1989.  Edward Arnold.  Distributed in US by Oxford U 

Press. (second ed. 1997)  
Berger, J. O.  “Bayesian Analysis:  A Look at Today and Thoughts of Tomorrow.”  p. 275-290   Statistics 

in the 21st Century, 2002.  Chapman and Hall.   
Gelman, A., Carlin, J.b., Stern, H. S., and Rubin, D. B.  Bayesian  Data Analysis, Second Edition. 2003. 

Chapman and Hall.    
 
Use a Bayesian application yourself! 
Bayesian Spam Filtering.  http://email.about.com/cs/bayesianfilters/a/bayesian_filter.htm  
 
Elementary Statistics with Bayesian methods: 
Albert, J, Rossman, A.  Workshop Statistics:  Discovery with Data.  A Bayesian Approach. 2001 Key 

College Publishing.   
Berry, Donald.  Statistics, A Bayesian Perspective, 1996 Wadsworth.  
 
Comparison of Bayesian and Frequentist methods: 
Efron, Bradley, Interview.  http://www.mhhe.com/business/opsci/bstat/efron.mhtml 
Efron, Bradley,  Bayesian, Frequentists, and Physicists.  http://www-

stat.stanford.edu/~brad/papers/physics.pdf 
Barnett, Vic.  Comparative Statistical Inference.  1999 Wiley.   
 
 
Teaching Elementary Statistics:  (NOT organized by easiest first.  All are at about the same level.) 
Consortium for the Advancement of Undergraduate Statistics Education:   http://www.causeweb.org/   

(many resources) 
 
Textbooks for Elementary Statistics: 
Moore, David, Basic Practice of Statistics, 3rd ed. 2003, WH Freeman 
Moore, David and McCabe, George, Introduction to the Practice of Statistics, 4th ed. 2002, WH Freeman. 
Freedman, Pisani, and Purves, Statistics, 3rd ed. 1997.  W.W. Norton. 
Utts, J. and Heckard, T  Mind on Statistics, 2nd ed. 2003. Duxbury. 
DeVeaux, R. and Velleman, P. Intro Stats 2003.  Addison-Wesley. 
Rossman, A. and Chance, B.  Workshop Statistics: Discovery with Data, 2nd ed. 2001 Key College 

Publishing.   
 
 


