Spreadsheets in a Math for Liberal Arts Course

Presentation at Joint Math Meetings, January 13, 2018
Mary Parker, Austin Community College

Challenge and Opportunity

Challenge

It's hard to put much math modeling into an already-full math course.

Opportunity

Math for Liberal Arts has more flexibility in the choice of topics and depth of coverage than other lower-division courses.

Challenge and Opportunity

Challenge

Students in Math for Liberal Arts are, in general, not adept at algebra.

Opportunity

It is common that students feel more powerful using spreadsheets to investigate quantitative questions than they have felt in the past using algebra.

Types of spreadsheets

Most of the course:

- Rule-driven procedures.

Make the spreadsheet just by implementing the rule and iterating.
Latter part of the course:

- Graphing formulas.
- Using a graph to estimate the best fitting formula to data.

This gives students more skill in interpreting and understanding the parameters of the formulas.

How do we build skills?

1. Start with some basic review of percentages and proportions. Using a "Problem solving" chapter from a text at this level, quickly go to more complicated problems involving these.
2. Teacher models using a spreadsheet for calculation on problems that students are using calculators for.
3. Teacher starts demonstrating cell references and pulling down formulas.
4. Students work on problems that are straightforward to do one step at a time, but tedious to fully carry out by hand.

What do students learn to do with spreadsheets in the Finance portion?

- Develop spreadsheets to compute accumulated savings with simple and compound interest.
- Method:

By hand, compute the values one row at a time, for two or three rows.
Then write formulas in the spreadsheet.

We give the framework, students enter formulas and pull down.

Students model various types of growth.

Students develop a loan amortization sheet.

Students use an annuity calculator to explore the effects of various interest rates and various choices.

Financial Advice Project (in Groups)

- Students are given Joe's income, monthly spending pattern, and debts and asked to give him advice. (Three different scenarios per group.)
- They are expected to use an online debt-reduction calculator to compute his optimal loan payment strategy, including choosing which method to use to decide how much to pay on each loan and when (snowball, avalanche, etc.)
- They are also expected to use a spreadsheet to summarize all of this.
- On the final exam in the course, they are expected to use their spreadsheet to make some additional adjustments and give the resulting values.

One student's workbook

Her revised budget for Joe

A	B	C	D	E	F	G	H	I	
	150	misc	subtracted 100 by getting rid of unneccessary misc payments						
	100	gas	subtracted 100 by using public transportation						
	40	health ins							
	80	car ins							
	164.79	FICA							
	256.75	income ta							
	175	401k							
	\$ 836.90	Loans/cred	dit cards	edite		s to decre	am	nt of intere	st pa
						Income ye		Income m	monthl
						35000		2916.667	
						2760		230	
						37760		3146.667	
	\$2,526.43	expenses							
	\$3,146.67	income				Savings accour			
	\$ 620.24	net							
						Monthly d	osit	Interest ra	rate
						\$ 620.24		0.01	
				started		count with in	sti	his monthly	y cash

Modeling data with formulas

Linear $y=m x+b$
Quadratic $y=a(x-h)^{2}+k$

Exponential $\quad y=a(1+r)^{x}$

These forms were chosen (for quadratic and exponential) because the parameters are easy to interpret.

Page 3 of the workbook, as provided to students

- The labels of the columns
- The formulas
- The places to enter the parameter values (Red arrows here)
- Labels in cells G1 and G2 that are more elaborate than we will expect students to do, but useful in the beginning.

Page 2 of workbook, as students started

- They copied data to the sheet
- They "pulled down" the formulas for the prediction and the deviations
- They made a graph
- Then they estimated the slope and intercept

Page 5 of workbook. Note the parameterization of the quadratic model.

Why spreadsheets?

- Requires active participation.
- Different type of engagement in this from working with algebra (symbolic manipulation.) Usually students have a better attitude about trying to make it make sense.
- Generally speaking, everyone's product looks good - considerably more so than when doing work by hand.

Why spreadsheets?

- Making successive adjustments to improve their estimates and their solutions shows students a different (and useful) aspect of quantitative thinking than in previous math courses.
- Students successfully do considerably more complex problems than they expect to be able to do.

See
 http://www.austincc.edu/mparker/talks/ or mparker@austincc.edu

Includes these slides, a longer set of slides with more details, and links to some materials.

