MATD 0390 Additional Notes for Instructors of Computer-mediated Sections, 2008-2009
(as of Spring 2008, PLATO Interactive Mathematics is now called Academic Systems Algebra)

Text: Academic Systems Algebra Intermediate Algebra Personal Academic Notebook (Note: this program is completely web based now and the textbook will no longer come with CDs. The program is launched from the website http://asalgebra.platoweb.com)

Student Supplements: Required additional Exercise Sets are posted by course at http://www.austincc.edu/jbickham/mediated.

Instructor Supplements:
- Academic Systems Algebra Answers and Solutions
- Interactive Mathematics Test Check CD (version 4.1)
- Other resources available at: http://academictraining.plato.com (Click on Academic Systems Algebra – username “asalg” and password “asalg”)

IMPORTANT INFORMATION
Please be aware that because some of the beginning topics in this course may be review for the students, some students may be ready to take their exams long before the scheduled dates. Therefore, we recommend that you create your exams as soon as possible and that you ask your students to notify you in advance if they plan to take an exam before the scheduled dates.

The minimum computer requirements for faculty to work with the software from home are the same as for students. Please refer to the First Day Handout for Students for the minimum requirements.

Before the First Class Day
Familiarize yourself with the contents of the software and print materials. Visit the Instructor Resource website located at http://academictraining.plato.com and click on Academic Systems Algebra. You will need the username “asalg” and password “asalg” to enter. This site contains complete copies of the Answers and Solutions, Instructor's Guide and all Personal Academic Notebooks: Prealgebra, Elementary Algebra and Intermediate Algebra. In addition, this site contains links to training resources and technical support. This site is strictly for instructors and should not be given out to students.

Another important site to visit is the Student Resource site found at http://asalgebra.platoweb.com/content/asalgebra/Help/StudentOrientation/htmlpages/index.htm
This site includes a “Getting Started” video as well as tutorials on how to use the expression editor and other features.

If you are teaching online courses, you may want to direct your students to the site http://support.plato.com/AS-Alg/index.asp and have them watch the Academic Systems Student Orientation Tutorial. This is a 5 minute video that shows students how to log on and begin in lesson.

It is very important that you check out the classroom where you will be teaching and familiarize yourself with the technical staff that will assist you with hardware problems. Make sure that you log on as a student to several computers and make sure the program is running smoothly. Check to see if you are able to print for these stations and to see if other issues need to be addressed (such as disabling pop-up blockers).
Finally, before the first class day you should register your students, including some pseudo-students for those who add or register late. After you have registered your students, be sure to select all of your students and enroll these students in your section. The instructions on how to do this will be covered during a training session held before the semester begins. If you need help with this, please ask Karen Chaka or Janet Bickham. Print out your Curriculum Plan and your class roster and keep it handy throughout the semester. You may add students and remove students at any time during the semester. Be careful to not delete a student who has entered their validation code. These students should have access to the program for one year.

It is likely that at least some of your students will not have their books on the first class day. Your students will be able to log on and do lessons without their book (validation code) for the first 2 weeks of class. They may also work in the learning lab or from home if they have the minimum computer requirements. You should pick up a Lab schedule to share with your students. Students should be encouraged to log on outside of class time either in the learning lab or elsewhere in order to complete all of the lessons in a timely manner.

On the First Day

Some of the first day is pretty much like for any other class: introduction, explanation of your policy sheet and departmental syllabus, and the Pretest Review and/or the Pretest. Your students will have a 10-digit validation number printed on a card within their textbook. Stress to your students the importance of saving this number. The program will prompt the student to enter this number in order to do lessons. The students are given a 2-week grace period in which they can work without entering the validation number. This will give the student time to decide if this computer-mediated format of learning is appropriate for them. Approximately 2 weeks into the course the validation option will be turned on and students will no longer be able to do lessons without entering their validation code. They are only asked to enter this code once. After the validation code has been entered, the student will have access to the program for one year. It is still important that our students are purchasing their textbooks new and only from an ACC bookstore. Any student who does not enter a validation number should be deleted from the system. You will also want to have all of the students complete the survey to ensure that the mediated learning method is what they need and to determine whether they should consider working with the software at home.

Designate an area of the room for students to turn in homework and an area to pick up graded homework, if you require homework to be turned in. Also designate an area for students to pick up handouts. The students, once settled in, will tend to come to class ready to work on the computers. Designating these areas will allow them more independence in the management of paperwork as well. Provide copies of any "Lab Etiquette" handouts you or the technical support for your computer classroom may have.

Your Instructor's Guide (online resource) offers both online activities and offline activities for the first class day. We recommend that, if possible, you allow the students to get online the first day. Have them put on the headphones, log on, then select "Assignments". Your students will see a series of lettered blocks that they will click on to get to their lessons. The lesson "Getting Started" should be under Block A and takes about 20 minutes to complete. It introduces the software and how to navigate through the material, including how to adjust the volume. If they finish that, allow them to begin the first math lesson.

Remind students of the importance of bringing their book, paper and pencil to class each day.
The Second Day and Beyond
Although we usually expect the first day to be our most hectic, it is actually the next few days that will seem more so. This is because you will have new students who show up and need your introduction to the course at the same time that returning students are ready to move on to their lessons. Maintain your sense of humor and be flexible. Try to seat the new students together so you can work with them as a group.

Even after enrollment has stabilized, you may have students who seek an informal transfer into your class. We encourage you to accommodate these requests when possible. The software often provides the only reasonable means for students to complete a course. You may also have students from other mediated classes who need to work on computers in your room during your class time. To the extent that it is possible and does not interfere with your students' work, you may allow these students to work in your class. Your students should certainly have first priority. Please remember that you are under contract to serve the students who are enrolled in the section that meets during that time.

PLATO Interactive Mathematics Lesson-by-Lesson Comments

Lesson EII.A Real Numbers and Exponents (approx. 2 hours) The first lesson after "Getting Started" used to be Essentials Lesson EII.A. Students enrolled in Intermediate Algebra are expected to already know this material. Therefore, we do not include it in the weekly schedule or homework list. You may choose to provide your students access to this lesson as a quick review only.

Lesson EII.B Polynomials (approx. 2 hours) This is the first required lesson for Intermediate Algebra. Lesson EII.B reviews polynomial operations and factoring polynomials from Lessons 2.1, 6.2, 7.1, 7.2, and 7.3 of Elementary Algebra. The factoring includes greatest common factors, grouping, trinomials, difference of two squares, sum and difference of cubes, and using a combination of methods. Students may need to devote extra time to factoring sum and difference of cubes and to trinomials with leading coefficients other than one.

For students who did not take Elementary Algebra with mediated instruction, it is important to be sure that they know how to use the Expression Editor. This looks like a calculator to the right of an answer box and is used to enter algebraic expressions involving fractions, exponents and other special symbols. The Expression Editor functions much like the Equation Editor in MSWord. Facility with the Expression Editor is very important for students in this lesson. A tutorial on using the Expression Editor is posted on Academic Systems Algebra Student Orientation web page http://asalgebra.platoweb.com/content/asalgebra/Help/StudentOrientation/htmlpages/index.htm

Click on "Tips and Tutorials." Please share this web site with your students.

Lessons EII.B, EII.C, and EII.E may be mostly review for many of your students, and they may seem to fly through the material. If they already know these concepts, that is fine. The pretest and/or quizzes for the lessons will help determine whether they really have mastered the material. For those students who need extra help with this section, please help them as much as possible, but you may also want to recommend that they use the Learning Lab to get additional help. Please inform your students that they can receive extra attention with the math concepts and with their pencil and paper homework in the Learning Lab.

Lesson EII.C Equations and Inequalities (approx. 2 hours) This lesson reviews Lessons 2.2 from Elementary Algebra, which reviews solving linear equations. It also introduces a new topic for our MATD 0390 students: solving linear inequalities in a single variable. Students may need help with this new topic. There is a required extra handout Exercise Set EII.C that introduces interval notation.
Lesson EII.D Rational Expressions (approx. 2 hours) This lesson is no longer included in Intermediate Algebra because almost all of it (except negative exponents) is now considered new material for Intermediate Algebra. It is a review of Lessons 8.1, 8.2, and 8.3, which we now fully cover in Intermediate Algebra. Concepts covered include the properties of negative exponents, operations on rational expressions and solving equations that contain rational expressions.

Lesson EII.E Graphing Lines (approx. 3 hours) This lesson reviews Lessons 3.1, 4.1, and 4.2 from Elementary Algebra. It reviews the coordinate system, distance between two points, graphing lines, slope and intercepts, and finding the equation of a line. There is a required extra handout Exercise Set EII.E covering the midpoint between two points.

Lesson EII.F Absolute Value (approx. 3 hours) This lesson presents new material: solving equations and inequalities involving absolute values. The geometry of the number line is linked to the algebraic methods. Focus on absolute value equations and only the simplest absolute value inequalities, such as $|x|<5$ or $|z|>6$. The more complicated absolute value inequalities should not be covered. This can be done by creating your own quizzes for this lesson, adjusting students' quiz grades on the computer, and/or by not requiring these problems on homework or tests.

Lesson 4.3 Graphing Inequalities (approx. 2 hours) In this lesson, linear inequalities in two variables are graphed. Ordered pairs are verified as inside or outside the solution set for an inequality.

Lesson 5.1 Solving Linear Systems (approx. 3 hours) This is an introductory lesson on two by two linear systems and is provided as a quick review for students. Students who have recently had Elementary Algebra will probably do well enough on the Overview pretest to skip this lesson. Students from a lecture Elementary Algebra class will benefit from the emphasis on the links between the algebraic and geometric representations of these systems.

Lesson 5.2 Problem Solving (approx. 2 hours) This lesson is also provided as a quick review for Intermediate Algebra students. A variety of applications of 2×2 linear systems are discussed including number problems, interest problems, coin problems, and mixture problems. In Intermediate Algebra, we focus on the more challenging of these applications. Three-by-three systems are not required, but you may include additional handouts on these systems if it does not take time away from required topics. If you choose to include these handouts, you may want to include them toward the end of the semester (if time permits) so that you are sure they do not take time away from other topics. Also, focus on setting up the 3×3 systems rather than perfecting the procedures for solving them.

Lesson 5.3 Systems of Inequalities (approx. 2 hours) Systems of linear inequalities in two variables are solved by graphing.

Lesson 8.1 Rational Expressions I (approx. 2 hours) This lesson is now new material for Intermediate Algebra. The domain of a rational expression is covered as well as simplifying rational expressions. The operations of multiplying and dividing rational expressions, and simplifying complex rational expressions are included. Addition and subtraction of rational expressions is explained for rational expressions with the same denominator only.

Lesson 8.2 Rational Expressions II (approx. 3 hours) This lesson has three concepts: negative exponents (including scientific notation), multiplying and dividing rational expressions when "opposite" binomial factors are present, and addition and subtraction of rational expressions with different denominators. Again, most of this lesson (except negative exponents) is now new material for students.

Lesson 8.3 Equations with Fractions (approx. 2 hours) Equations and formulas containing rational expressions are solved in this lesson. This lesson is now new material for Intermediate Algebra.
Lesson 8.4 Problem solving (approx. 2 hours) This lesson covers applications leading to equations with rational expressions, including ratio and proportion, distance problems, work problems, and variation. Students may need extra time to learn to set up these problems for the first time.

Lesson 9.1 Roots and Radicals (approx. 3 hours) This lesson covers square roots and cube roots, operations on these radicals and simplifying square roots and cube roots. This material is new for Intermediate Algebra students.

Lesson 9.2 Rational Exponents (approx. 4 hours) This lesson expands the coverage of roots to orders higher than three. Rational exponents are presented as a means of simplifying the handling of these larger order roots.

Lesson 10.1 Quadratic Equations I (approx. 2 hours) This lesson covers solving quadratic equations by factoring and by using the square root property.

Lesson 10.2 Quadratic Equations II (approx. 3 hours) This lesson covers solving quadratic equations using completing the square and the quadratic formula, including using the discriminant. A required additional handout, Exercise Set 10.2, presents the use of completing the square to write equations of circles and parabolas in standard form and also covers graphing quadratic functions.

Lesson 10.3 Complex numbers (approx. 2 hours) The complex number system is presented, and operations on complex numbers and powers of i are explained.

Lesson 11.1 Functions (approx. 4 hours) This lesson fully develops the concepts of functions, their graphs, domain, and range. Students explore linear functions, absolute value functions, and quadratic functions.

Lesson 11.2 The Algebra of Functions (approx. 4 hours) The sum, difference, product, quotient, and composition of functions are presented. You may want to de-emphasize composition of functions because it is not a course objective. You may choose to have your students skip this in the software and make up your own quiz, or have them take the quiz and then adjust their grades to eliminate composition. It is also fine to go ahead and cover composition.

Lesson 12.1 Exponential Functions (approx. 2 hours) Exponential functions, their graphs, and their applications are presented. There is also material on the algebra of exponential functions. Some simple exponential equations are solved here as well.
IMPORTANT INFORMATION: You must buy your book at an ACC bookstore. Do not buy a book NOT wrapped in cellophane. Do NOT open the cellophane covering the book until after you have verified with your instructor that you are in the correct course. Once the package is opened, you may NOT return the book to the bookstore. The price of the book includes the cost of your license for using the computer software. When you do remove the wrapping, Be Sure To Save the card with your textbook that contains the 10-digit validation number on it that you will need later in the semester in order to do lessons. You will be able to do lessons without entering this number at the beginning of the semester, but 2 weeks into the course you will be prompted to enter this number to continue with your lessons. You will only be required to enter this validation number once. If you are repeating this course and no longer have your validation number from last semester, contact your instructor to see if you qualify for a waiver.

Text: Academic Systems Algebra Intermediate Algebra Personal Academic Notebook (Note: this program is completely web-based now and the textbook will no longer come with CDs. The program is launched from the website http://asalgebra.platoweb.com)

Supplemental Materials: Paper, Pencils, Erasers, Scientific Calculator, Graph Paper

Prerequisite: C or better in Elementary Algebra (MATD 0370), or its equivalent knowledge

Course Rationale: Welcome to Intermediate Algebra. This course is designed to prepare students for various college-level science and mathematics courses. After succeeding in this course, students may enroll in several courses in science, mathematics, and various technical areas, including General College Physics, General Chemistry, Magnetism and DC Circuits, AC Circuits, Math for Business and Economics, and College Algebra. All students who pass MATD 0390 must now first pass College Algebra before enrolling in Trigonometry.

Course Description: A course designed to develop the concepts covered in the second year of high school algebra. Topics include review of properties of real numbers, functions, algebra of functions, inequalities, polynomials, factoring, rational expressions and equations, radical expressions and equations, quadratic functions and graphs, solving quadratic equations, and exponential functions.

Course Objectives: Instructors must include these in the syllabus. They are posted at http://www.austincc.edu/mthdept2/tfcourses/obj0390.htm.

Instructional Methodology: This class is conducted in a computer lab setting.

Attendance: Attendance is expected in this course. Students who have excessive absences may be withdrawn. TSI-mandated students who have excessive absences will be withdrawn.

TSI Warning: If you are relying on this course to meet a requirement that you be in mandatory remediation in mathematics this semester*, then

i. if you are not "continually in attendance" in this course, you should be withdrawn from the course by your instructor,

ii. if you withdraw yourself from this course or are withdrawn by your instructor, you may be withdrawn from all of your other college courses if this is the only TSI-mandated course you are taking.

** If you are unsure whether or not this warning applies to you, see an ACC advisor immediately.

*Additional info about ACC's math curriculum and faculty is available at http://www.austincc.edu/math/
First Day Handout for Students in Computer-mediated Sections (Page 2 of 7)

Withdrawal Policy: It is the student's responsibility to initiate all withdrawals in this course. The instructor may withdraw students for excessive absences but makes no commitment to do this for the student. After the withdrawal date, neither the student nor the instructor may initiate a withdrawal. TSI-mandated students with excessive unexcused absences will be withdrawn. The withdrawal deadline is ___________________.

Reinstatement Policy: Students who withdrew or were withdrawn generally will not be reinstated unless they have completed all course work, projects, and tests necessary to place them at the same level of course completion as the rest of the class.

Incomplete grades (I) are given only in very rare circumstances. To qualify for an "I", a student must have completed almost all exams and assignments, have a passing grade, and have a serious situation occur that prevents course completion after the withdrawal deadline.

In Progress grades (IP) are also rarely given. In order to earn an "IP" grade the student must remain in the course, be making progress in the material, not have excessive absences, and not be meeting the standards set to earn the grade of C or better in the course. Students who are given an IP grade must register and pay for the same course again to receive credit. Students who make a grade of IP should not go on to the next course with that grade. A maximum of two IP grades can be awarded in any one course. [Note to instructors: this policy may be left out of your syllabus.]

Course Policies: The syllabus should also include the following policies of the instructor:
• Grading policy
• Missed exam policy
• Policy about late work (if applicable)
• Class participation expectations

The syllabus should also contain the following policies listed in the First Day Handout section in the front part of the Math Manual. Go to http://www.austincc.edu/mthdept5/mmant07/statements.html

Insert the full statement for each of the following policies in your syllabus:
• Statement on Students with Disabilities
• Statement on Scholastic Dishonesty
• Recommended Statement on Scholastic Dishonesty Penalty
• Statement on Academic Freedom
• Recommended Statement on Student Discipline

Course-Specific Support Services: ACC main campuses have Learning Labs which offer free first-come first-serve help with math from tutors and computer tutorials for math courses. Learning Lab information is posted at http://www.austincc.edu/tutor/. Also, videotapes that cover all topics can be checked out in the Learning Resource Centers (libraries). Ask your instructor if you need help finding them.

Course Evaluation/Grading Scheme: Grading criteria must be clearly explained in the syllabus. The criteria should specify the number of exams and other graded material (homework, assignments, projects, etc.) and should include the comprehensive departmental final exam. Instructors should discuss the format and administration of exams, which may be given in an ACC Testing Center http://www.austincc.edu/testctr/. Guidelines for other graded materials, such as homework or projects, should also be included in the syllabus.
This special section of the course uses the Academic Systems Algebra computer software package. The software provides visual explanations and includes an audio component for listening to the explanations. It is called "interactive" because you are continually being prompted for input.

In this class, you will be in charge of your learning in a different way from a traditional lecture class. You may work ahead of schedule and complete the course before the end of the semester. You also may spend less time on familiar topics and more time on troublesome topics. In order to complete the course this semester, you must generally keep up with the weekly schedule and test schedule provided. In order to succeed in this class, you should plan to spend about 9 to 15 hours each week (or more, if necessary) working on the material, depending on how much of the material is review for you. The program is available all day everyday except when it is being backed up. Backups are scheduled for every Friday at 8 p.m. and may not be complete until 2 a.m. Saturday.

If you receive an error message while working outside of ACC, print or copy the error message. Then please call the free PLATO technical support line listed below, and wait on the line to get help. If they are unable to help you, please ask your instructor for help.

For more information about using Academic Systems Algebra, please visit the Student Orientation website http://asalgebra.platoweb.com/content/asalgebra/Help/StudentOrientation/htmlpages/index.htm and explore the pages called "Getting Started" and other tutorials. Another helpful site is http://support.plato.com/AS-Alg/ . These web sites contain the latest information about computer requirements as well as instructions for installing and using the software. Be sure to turn off any pop-up blockers for the site http://asalgebra.platoweb.com in order to do lessons. For installation problems, please visit http://support.plato.com , and click on Academic Systems Algebra to view their knowledge base articles and other resources.
Minimum Computer Requirements*
Updated 4-14-08

Windows XP SP2 Professional or Home Edition/ Windows 2000 Professional with SP4

Processor Speed: 1 GHz processor or faster
Memory: 512 MB or more
Sound card: Microsoft-compatible sound card and headset (required only if running PLATO Learning audio courseware)
Internet connection: 128Kbps per *simultaneous* workstation
Web Browsers: Internet® Explorer 6.0 with Service Pack 1
 Internet® Explorer 7.0
Required Plug Ins: Flash Player and Adobe Reader

Windows Vista

Processor Speed: 1 GHz processor or faster
Memory: 512 MB or more
Sound card: Microsoft-compatible sound card and headset (required only if running PLATO Learning audio courseware)
Internet connection: 128Kbps per *simultaneous* workstation
Web Browsers: Internet® Explorer 7.0
Required Plug Ins: Flash Player and Adobe Reader

For Free Technical Support (Monday – Friday, 7am – 6pm Central), please call 1-800-869-2200.
Academic Systems Algebra Software: The software for the course is divided into Topics. Each Topic is divided into Lessons. Within each Lesson are some or all of the following six Modules:

OVERVIEW:
- Brief summary of prerequisite skills for the lesson
- **Pretest** (may only be taken once)

EXPLAIN:
- Mathematics instruction
- Check for understanding problems with feedback
- Help line: Red Phone icon gives hints or simplified explanation
- Take a Closer Look: Magnifying Glass icon gives detailed explanations
- Glossary Words: Click on any underlined word for the on-line definition

APPLY:
- Practice problems to apply the skills learned in Explain
- Link to Explain: Icon with Light Bulb (like Explain) will link from Apply back to Explain information related to the problem
- Explanation of the Expression Editor, if needed

EXPLORE:
- Optional module available with some lessons
- More challenging problems to explore and discover mathematics

EVALUATE:
- **Quiz** for the lesson (up to three versions may be taken for each lesson)
- Homework and Practice Test in the book should be completed before entering this module
- Up to three attempts are allowed on the quiz; highest grade is recorded

HOMEWORK:
- You may use these as practice problems, but you are not required to do these online problems as part of your grade. Your instructor, instead, will make an assignment from your textbook that will be a required part of this course.

Your textbook is the Personal Academic Notebook (PAN). Refer to this book when completing homework assignments, reviewing for tests, or taking the Practice Test to prepare for the Pretest (in Overview on the computer) or the Quiz (in Evaluate on the computer). In addition to taking Practice Tests from the book and Pretests and Quizzes on the computer, you will be taking Tests, either in class or in the Testing Center. You will also take a comprehensive departmental final exam. More information about ACC’s Testing Centers is available at <http://www.austincc.edu/testctr/>.

Your instructor will provide you with at least three additional handouts: (1) a list of homework problems, (2) a schedule indicating which lessons to complete each week, when tests are to be taken, and what those tests will cover, and (3) a handout detailing your instructor’s testing, homework, and grading procedures. If you have not received these handouts, please ask your instructor for them.

MANAGING YOUR TIME ON THE COMPUTER
To make the best use of your time on the computer, you may use the following guidelines:

1. If you have prior knowledge of the material in a lesson, take the Practice Test in your book. If this test is fairly easy for you, complete the Pretest in Overview on the computer.

2. If you have difficulty with the Practice Test or if much of the material is new or problematic, begin with the Explain and Apply Modules on the computer. Do your homework. Then use the Practice Test in the book and the Overview Pretest on the computer to prepare for the Evaluate Quiz on the computer.

Your grade on the lesson will be the highest of three attempts on the Evaluate Quiz, unless you score 95 or more on the Overview Pretest and save that Pretest grade as your Quiz grade for the lesson.
This weekly schedule and schedule of exams is provided to help you pace yourself so that you may take tests on time and complete the course during the semester. You may work ahead and finish early. If you get behind this schedule, speak to your instructor about how to get caught up.

Additional Help: Free tutoring is available at the Learning Labs at most ACC campuses. For more info about the Learning Labs, please visit the web site <http://www.austincc.edu/tutor/>.

Speak to your instructor if you have any questions or concerns about participating in this class. If, for any reason, you would prefer to attend a traditional lecture class, please ask your instructor to help you make a schedule change. These changes should be done as early in the semester as possible.

<table>
<thead>
<tr>
<th>16-Week Schedule</th>
<th>11-Week Schedule</th>
<th>6 Week Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 2: EII.C*, EII.E*</td>
<td>Week 2: EII.E*, EII.F</td>
<td>Week 2: 5.1, 5.2, 5.3, 8.1, 8.2, Exam 2</td>
</tr>
<tr>
<td>Week 3: EII.F, 4.3, Exam 1</td>
<td>Week 3: 4.3, Exam 1, 5.1</td>
<td>Week 3: 8.3, 8.4, 9.1, 9.2, Exam 3</td>
</tr>
<tr>
<td>Week 4: 5.1, 5.2</td>
<td>Week 4: 5.2, 5.3</td>
<td>Week 5: Final Exam</td>
</tr>
<tr>
<td>Week 5: 5.3, 8.1</td>
<td>Week 5: 8.1, 8.2, Exam 2</td>
<td>Week 6: 8.3, 8.4</td>
</tr>
<tr>
<td>Week 6: 8.2, Exam 2, 8.3</td>
<td>Week 6: 8.3, 8.4</td>
<td>Week 7: Final Exam</td>
</tr>
<tr>
<td>Week 7: 8.3, 8.4</td>
<td>Week 7: 9.1, 9.2, Exam 3</td>
<td>Week 8: 10.1, 10.2, 10.3, Exam 4</td>
</tr>
<tr>
<td>Week 8: 9.1, 9.2</td>
<td>Week 8: 10.1, 10.2*</td>
<td>Week 9: Final Exam</td>
</tr>
<tr>
<td>Week 9: 9.2, Exam 3, 10.1</td>
<td>Week 9: 10.3, Exam 4, 11.1</td>
<td>Week 10: Final Exam</td>
</tr>
<tr>
<td>Week 10: 10.1, 10.2*</td>
<td>Week 10: 11.2, 12.1</td>
<td>Week 11: Final Exam</td>
</tr>
<tr>
<td>Week 11: 10.2*, 10.3</td>
<td>Week 11: Review, Final Exam</td>
<td>Week 12: Final Exam</td>
</tr>
<tr>
<td>Week 12: 10.3, Exam 4, 11.1</td>
<td></td>
<td>Week 13: Final Exam</td>
</tr>
<tr>
<td>Week 13: 11.1, 11.2</td>
<td></td>
<td>Week 14: Final Exam</td>
</tr>
<tr>
<td>Week 14: 11.2, 12.1</td>
<td></td>
<td>Week 15: Final Exam</td>
</tr>
<tr>
<td>Week 15: 12.1</td>
<td></td>
<td>Week 16: Final Exam</td>
</tr>
</tbody>
</table>

* Exercise Set Handouts EII.C, EII.E, and 10.2 have additional Exercise Sets that are required for this course.
NOTE: All assignments are from your textbook (PAN) unless otherwise indicated.

<table>
<thead>
<tr>
<th>Due Date</th>
<th>Lesson</th>
<th>Starting Page</th>
<th>Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EII.B</td>
<td>47</td>
<td># 3, 7, 9, 13, 15, 19, 21, 23, 25, 27, 29, 33, 35, 37, 39, 41, 45, 47, 51, 55</td>
</tr>
<tr>
<td></td>
<td>EII.C</td>
<td>65</td>
<td># 1, 5, 9, 13, 17, 21, 25</td>
</tr>
<tr>
<td>Exercise Set EII.C*</td>
<td>Handout</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EII.E</td>
<td>113</td>
<td># 9, 11, 15, 17, 19, 23, 27, 29, 33, 37, 41, 49, 53</td>
</tr>
<tr>
<td>Exercise Set EII.E*</td>
<td>Handout</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EII.F</td>
<td>134</td>
<td># 1, 5, 9, 11, 17, 21, 25, 29, 33, 41, 45, 53, 55</td>
</tr>
<tr>
<td></td>
<td>4.3</td>
<td>231</td>
<td># 1, 5, 9, ..., 25 (every other odd)</td>
</tr>
<tr>
<td></td>
<td>5.1</td>
<td>259</td>
<td># 1, 3, 5, 7, 9, 13, 19, 23, 24, 27, 29, 33, 37, 41, 45, 49, 53, 55</td>
</tr>
<tr>
<td></td>
<td>5.2</td>
<td>278</td>
<td># 1, 3, 5, 7, 9, ..., 27 (all odd)</td>
</tr>
<tr>
<td></td>
<td>5.3</td>
<td>292, 293</td>
<td>"Explore": # 13 "Apply": # 1, 3, 7, 9, 15</td>
</tr>
<tr>
<td></td>
<td>8.1</td>
<td>434</td>
<td># 1, 5, 9, ..., 53 (every other odd)</td>
</tr>
<tr>
<td></td>
<td>8.2</td>
<td>465</td>
<td># 1, 5, 9, ..., 81 (every other odd), 82, 83</td>
</tr>
<tr>
<td></td>
<td>8.3</td>
<td>481</td>
<td># 1, 3, 5, 7, 9, ..., 25 (all odd)</td>
</tr>
<tr>
<td></td>
<td>8.4</td>
<td>497</td>
<td># 1, 3, 5, 7, 9, ..., 25 (all odd)</td>
</tr>
<tr>
<td></td>
<td>9.1</td>
<td>535</td>
<td># 1, 5, 7, 9, 13, 15, 17, 19</td>
</tr>
<tr>
<td></td>
<td>9.2</td>
<td>569</td>
<td># 1, 5, 9, ..., 77 (every other odd)</td>
</tr>
<tr>
<td></td>
<td>10.1</td>
<td>591</td>
<td># 1, 5, 9, ..., 49 (every other odd)</td>
</tr>
<tr>
<td></td>
<td>10.2</td>
<td>618, 619</td>
<td>"Explore": # 25 "Apply": # 1, 5, 9, ..., 41 (every other odd), 49, 51</td>
</tr>
<tr>
<td>Exercise Set 10.2*</td>
<td>Handout</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.1</td>
<td>639</td>
<td># 1, 3, 5, 7, 9, ..., 27 (all odd)</td>
</tr>
<tr>
<td></td>
<td>11.2</td>
<td>720,724</td>
<td>"Homework": # 1, 3, 5, 7, 11, 25 "Apply": # 1-15 (all odd)</td>
</tr>
<tr>
<td></td>
<td>12.1</td>
<td>755,757</td>
<td>"Homework": # 1-11 (all odd) "Apply": # 1-15 (all odd)</td>
</tr>
</tbody>
</table>

Exercise Set Handouts EII.C, EII.E, and 10.2 are required materials for the course.