LATENT HEAT OF FUSION

INTRODUCTION

When a solid has reached its melting point, additional heating melts the solid without a temperature change. The temperature will remain constant at the melting point until <u>ALL</u> of the solid has melted. The amount of heat needed to melt the solid depends upon both the amount and type of matter that is being melted. Therefore:

$Q = ML_f \quad \underline{\text{Eq. 1}}$

where Q is the amount of heat absorbed by the solid, M is the mass of the solid that was melted and L_f is the latent heat of fusion for the type of material that was melted, which is measured in J/kg, NOTE: to fuse means to melt.

In this experiment the latent heat of fusion of water will be determined by using the method of mixtures $\Sigma Q=0$, or $Q_{Gained} + Q_{Lost} = 0$. Ice will be added to a calorimeter containing warm water. The heat energy lost by the water and calorimeter does two things:

- 1. It melts the ice;
- 2. It warms the water formed by the melting ice from zero to the final equilibrium temperature of the mixture.

Heat gained + Heat lost = 0

Heat needed to melt ice + Heat needed to warm the melt water + Heat lost by warn water = 0

$\mathbf{M}_{ice}\mathbf{L}_{f} + \mathbf{M}_{ice}\mathbf{C}_{w} (\mathbf{T}_{f} - \mathbf{0}) + \mathbf{M}_{w}\mathbf{C}_{w} (\mathbf{T}_{f} - \mathbf{T}_{w}) = \mathbf{0} \quad \underline{Eq. 2}.$

* Note: The mass of the melted water is the same as the mass of the ice.

where M_w = mass of warm water initially in calorimeter M_{ice} = mass of ice and water from the melted ice C_w = specific heat of water L_f = latent heat of fusion of water T_w = initial temperature water T_f = equilibrium temperature of mixture

APPARATUS: Calorimeter, thermometer, balance, ice, water

OBJECTIVE: To determine the latent heat of fusion of water

PROCEDURE:

- 1. Find and record the mass of the empty calorimeter $\sup M_c$.
- 2. Fill the calorimeter cup about half full of luke warm water. (The water temperature should be between 5°-10° above room temp.)

- 3. Determine the mass of the calorimeter cup and water. Record in the Data Table.
- 4. Calculate the mass of the added water, M_{w} . Record in the Data Table.
- 5. Determine and record the initial temperature of the water (T_w) .
- 6. Warm the ice to 0° C by placing the ice in a separate water bath. Dry small pieces of ice with a paper towel in order to remove adhering water prior to placing them into the calorimeter cup.
- 7. Add a mass of ice approximately equal to 1/3 to 1/4 of the mass of the water in the calorimeter. Keep the mixture well stirred.
- 8. When all of the ice is melted entirely keeping the mixture well stirred, find and record the equilibrium temperature (T_f) .
- 9. Find and record the combined mass of the calorimeter cup and water, which now includes water from the melted ice.
- 10. Find and record the actual mass of the ice, M_{ice}

DATA

1. Mass of empty calorimeter cup $(\mathbf{M}_{\mathbf{c}})$	kg	
2. Mass of calorimeter cup and warm water	kg	
3. Mass of warm water $(\mathbf{M}_{\mathbf{w}})$	kg	
4. Mass of calorimeter cup and water (after ice melts)	kg	
5. Mass of ice added (\mathbf{M}_{ice})	kg	
6. Initial temperature of warm water $(\mathbf{T}_{\mathbf{w}})$	°C	
7. Final temperature of water and melted ice (T_f)	°C	
8. Specific Heat of Water (C_w)	4,186 J/(kg C °)	
9. Use equation 2 to solve for the latent heat of fusion L_{f} .		

Heat gained + Heat lost = 0

Heat needed to melt ice + Heat needed to warm the melt water + Heat lost by warn water = 0

$M_{ice}L_f + M_{ice}C_w (T_f - 0) + M_wC_w (T_f - T_w) = 0 \underline{Eq. 2}.$

10. Heat of fusion of ice, L_f	J/kg
11. Accepted value for the heat of fusion of ice	<u>3.33*10⁵</u> J/kg
12. Percent error	%