Topic: Diseases of Cardiovascular and System

System Structure
• Composed of 3 parts:
 – Heart
 – Blood
 – Blood vessels
• Arteries ➔ connected to veins via capillaries
• Blood composition
 – Serum – liquid part of blood
 – Formed elements – erythrocytes, leukocytes, platelets

Structure – Big Picture
Blood & Lymph System

- **Movement (review)**
 - Right ventricle pumps blood to the lungs
 - Oxygen enters blood and carbon dioxide diffuses out
 - Oxygenated blood returns to the heart through the left ventricle and then to the arteries and capillaries
 - Capillaries carry blood to the surrounding tissues and also leak fluid that is picked up by the lymphatic vessels

Infection Terms

- **Septicemia**
 - Any microbial infection of the blood that produces illness
- **Bacteremia**
 - Bacterial septicemia that is often harmless
- **Toxemia**
 - Release of bacterial toxins into the blood
- **Lymphangitis**
 - Infection and inflammation of the lymphatic vessels

Characteristic streaking presentation of Lymphangitis (sign of Septicemia)
Signs & Symptoms – Septicemia, Bacteremia, Toxemia

- Fever, chills, nausea, vomiting, diarrhea, malaise
- Septic shock can develop rapidly
- Small hemorrhagic lesions called petechiae can develop
- Osteomyelitis can occur when bacteria invade the bones
- Toxemia symptoms vary depending on the toxin
 - Exotoxins – released from living microorganisms
 - Endotoxin – released from Gram-negative bacteria

Characteristic petechiae (bacteremia sign)

Pathogens and virulence factors

- Septicemia and toxemia are caused by various bacteria
- Pathogens are often opportunistic or nosocomial infections
- Gram-negative bacteria cause septicemia more often than Gram-positive bacteria
- Presence of capsule that resists phagocytosis
- Capacity to capture iron needed for bacterial growth
- Endotoxin produced by Gram-negative bacteria
Pathogenesis and Epidemiology

- Septicemia - acquired by direct inoculation of bacteria into the blood
 - Examples include medical procedures, drug users
- Immunocompetent individuals rarely have septicemia
 - Bacterial infections in these people are self-limited
- Gram-negative bacteria are more likely to produce severe septicemia due to release of endotoxin as the bacteria die
 - Endotoxin activates various defensive reactions by the body

Endotoxin Effects

About Septicemia, Bacteremia, Toxemia

- Signs and symptoms are usually **diagnostic**
- Bacteria are cultured from the blood in fewer than half the individuals with indications of sepsis
- **Treatment** requires prompt identification and administration of antimicrobial drugs
- **Prevention** includes immediate treatment of infections, especially in individuals with compromised immune systems
Endocarditis

- Signs and symptoms
 - Fever, fatigue, malaise, tachycardia
- Pathogens
 - Viridans streptococci – half of cases
- Pathogenesis and epidemiology
 - Patients usually have obvious source of infection
 - Patients with abnormal heart have increased risk
- Diagnosis, treatment, and prevention
 - Treat with intravenous antibacterial drugs
 - High-risk patients can be given prophylactic antibiotics when needed

Brucellosis

- Signs and symptoms
 - Fluctuating fever that spikes every afternoon
- Pathogen and virulence factors
 - Caused by Brucella melitensis strains
 - LPS causes some of the signs and symptoms
- Pathogenesis and epidemiology
 - Consumption of contaminated dairy products
 - Contact with animal blood, urine, or placentas
- Diagnosis, treatment, and prevention
 - Usually requires no treatment
 - Attenuated vaccine exists for animals
Tularemia Presentation (*Francisella tularensis*)

- G neg, bacillus
- Entry: tick, ingestion, inhalation
- Presents as fever, chills, headache, diarrhea, joint & muscle pain, progressive fatigue, chest & resp. issues
- Incubate 3-5 days avg (up to 2 wks)
- I.M. streptomycin and tetracycline

Plague – Bubonic and Pneumonic

- **Gram negative cocobacillus (*Yersinia Pestis*)**
 - Bubonic plague is characterized by enlarged, inflamed lymph nodes called buboes
 - Pneumonic plague occurs when the bacterium spreads to the lungs
- **Virulence factors** include adhesins, type III secretion systems, capsules, and antiphagocytic proteins
- **Diagnosis** based on characteristic symptoms; must be diagnosed and treated immediately
- **Treated** with various antimicrobial drugs
- **Prevention** occurs through rodent and flea control and good personal hygiene

Classic Bubo Presentation (lymphnodes)
Advanced Bubonic Plague Presentation
(Yersinia pestis)

- Black Death (dead, infected tissue)
- 1/3 of Europe in middle ages
- Fleas or inhalation

Yersinia pestis Transmission

Lyme Disease

- Epidemiology
 - One of most reported vector-borne diseases in U.S.
 - Two events contribute to increase in Lyme disease
 - Human populations have moved into woodland areas
 - Deer population has been protected
Ticks – the enemy! (Lyme Disease)

Bulls-eye presentation of Lyme Disease

Lyme Disease Bacteria (Borellia burgdorferi)

- Not in 100%
- Initial presentation

- G neg spirochete
-Ticks
- neurological (10%)
- arthritic (80%)
Lyme Disease Life Cycle

About Lyme Disease
- Diagnosis
 - Based on the signs and symptoms of the disease
 - Bacterium rarely detected in the blood
- Treatment
 - In early phases, antimicrobial drugs are used
 - Treatment of later phases is difficult because symptoms are often caused by the immune system
- Prevention
 - Use of repellants containing DEET
 - Use of protective clothing

Erlichiosis & Anaplasmosis
- New – unknown before 1987
- Tick-borne
- Rickettsia, Gram negative, obligate intracellular bacteria:
 - *Ehrlichia chaffeensis* causes erlichiosis
 - *Anaplasma phagocytophilum* causes anaplasmosis
- Live inside phagosomes, prevent fusion w/ lysosomes…
Erlichiosis and Anaplasmosis

- Flulike signs and symptoms
- Pathogen and virulence factors
 - *Ehrlichia chaffeensis* causes erlichiosis (HME – Human monocytic erlichiosis)
 - *Anaplasma phagocytophilum* causes anaplasmosis (HGA – Human granulocytic anaplasmosis)
- Diagnosis, treatment, and prevention
 - Diagnosis difficult due to mild symptoms
 - Treated with antimicrobials
 - Prevention involves avoiding tick-infested areas

Growing Inside Leucocyte!

Distribution of Erlichiosis and Anaplasmosis

- Blue = HME
- Red = HGA
- Purple = Both
Mononucleosis (Viral)

- Signs and symptoms
 - Severe sore throat and fever followed by enlarged lymph nodes
- Pathogen and virulence factors
 - Human herpes virus 4 (HHV-4) or Epstein-Barr Virus (EBV) is the causative agent
 - EBV can cause other conditions depending on the strength of the immune response of an individual

About Epstein-Barr Virus & Infectious Mononucleosis

- Pathogenesis
 - Transmission occurs via saliva
 - EBV infects B lymphocytes
- Diagnosis made based on the presence of large, lobed B lymphocytes and neutropenia
- Treatment focuses on relieving symptoms
 - Most cases resolve without treatment
- Prevention is difficult due to the widespread occurrence of EBV

Other Epstein-Barr Diseases
Cytomegalovirus

– Signs and symptoms
 • Asymptomatic in most cases
 • Neonates and immunodeficient individuals can have complications from CMV infection
– Pathogen and virulence factors
 • Caused by *Cytomegalovirus*
– Pathogenesis and epidemiology
 • Transmitted by direct contact with bodily secretions or across the placenta
 • One of the most common infections of humans
– Diagnosis, treatment, and prevention
 • Fomivirsen administered for eye infections

“Owl-eyes” histology of CMV

Viral Cardiovascular and Systemic Diseases

[INSERT FIGURE 21.14]

[INSERT DISEASE AT A GLANCE 21.5]
Yellow Fever

– Yellow fever virus (Flavivirus genus)
– Mosquito transmission
– Claims to fame:
 • One of most influential diseases in US history
 • 1793 killed ~10% of Philadelphia
 • Has affected the outcome of many battles and campaigns
 • Killed more American soldiers than bullets in Spanish-American war

Yellow Fever

– Signs and symptoms – three stages
 • First stage – fever, headache, muscle aches
 • Second stage – period of remission
 • Third stage – delirium, seizures, coma, hemorrhaging
– Pathogenesis and epidemiology
 • Transmission occurs via the bite of an infected Aedes mosquito
 • Virus travels to the liver, where it replicates
 • Yellow fever cases occur today in South America and Africa

Dengue (Fever & Haemorrhagic Fever)

– Signs and symptoms
 • Two phases of Dengue fever
 – First phase – fever, edema, head and muscle pain
 – Second phase – return of fever and red rash
 • Dengue hemorrhagic fever
 – Internal bleeding, shock, and possibly death
– Pathogens and virulence factors
 • Dengue viruses 1, 2, 3, and 4 are the causative agents
 • Aedes mosquitoes are the vector
Dengue Fever

- Pathogenesis and epidemiology
 - Dengue fever is usually a mild disease
 - Dengue hemorrhagic fever is more severe and can be fatal
- Diagnosis, treatment, and prevention
 - Diagnosis made based on signs and symptoms of someone who has traveled to endemic regions
 - No specific treatment available
 - Prevention requires control of mosquitoes

African Viral Hemorrhagic Fevers (Ebola & Marburg)

- Signs and symptoms
 - Fever, fatigue, minor petechiae that progresses to severe internal hemorrhaging
- Pathogens and virulence factors
 - Caused by *Ebolavirus* or *Marburgvirus*
- Pathogenesis and epidemiology
 - Contact with bodily fluids of infected individual or possibly via contact with an animal host
The culprit- Ebola Virus!

Distribution of African Hemorrhagic Diseases

In Virginia – only monkeys in a research facility

African Viral Hemorrhagic Fever
Diseases (cont.)

- Diagnosis, treatment, and prevention
 - **Diagnosis** based on characteristic symptoms and presence of virus in the blood
 - **Treatment** is supportive care including fluid and electrolyte replacement
 - **Vaccines** are being studied for their efficacy in preventing human disease
Protozoan and Helminthic Cardiovascular and Systemic Diseases

- Protozoa of the phylum Apicomplexa can cause disease in humans
- Life cycles of these parasites are complex and involve at least two types of hosts
Malaria

- Pathogens and virulence factors
 - Four Plasmodium species cause malaria
 - Disease severity depends on the species

- Virulence factors
 - Reproductive cycle occurs within red blood cells, hiding parasite from immune surveillance
 - Malaria secretome injects toxins into host cells
 - Adhesins allow red blood cells to adhere to certain tissues
 - Merozoites form within vesicles and avoid detection
 - Changes in body chemistry attract other mosquitoes

Malaria Pathology

- Pathogenesis
 - *P. falciparum* causes the most severe malaria
 - Certain genetic traits can increase resistance to malaria
 - Sickle-cell trait
 - Hemoglobin C
 - Genetic deficiency of glucose-6-phosphate dehydrogenase
 - Lack of Duffy antigens

- Epidemiology
 - Endemic in over 100 countries, though not in the U.S.
Toxoplasmosis

- Signs and symptoms
 - Majority of cases have no symptoms
 - Symptoms in those with poor immunity
 - Fever, malaise, and inflammation of the lungs, liver, and heart
 - Symptoms in the fetus
 - Stillbirth, epilepsy, mental retardation

- Pathogen and virulence factors
 - *Toxoplasma gondii* is the causative agent
 - Cats are the definitive host

Toxoplasmosis Life Cycle

Toxoplasmosis (cont.)

- Pathogenesis and epidemiology
 - consuming undercooked meat containing the parasite
 - Transmission across the placenta can occur
 - Specific mechanism of disease is not yet known

- Diagnosis, treatment, and prevention
 - Diagnosed mainly by detecting organisms in tissues
 - Treatment is usually unnecessary except in AIDS patients, pregnant women, and newborns
 - Prevention is difficult due to the numerous hosts of *T. gondii*
Chagas' Disease

- Caused by *Trypanosoma cruzi* – flagellated protozoan

- Pathogenesis and epidemiology
 - Transmission via bite of infected *Triatoma* (assasin bug) or transfusion with infected blood
 - Progresses through four stages
 - Site of bite swells
 - Stage with generalized symptoms such as fever, swollen lymph nodes, myocarditis
 - Chronic asymptomatic stage that can last years
 - Final stage characterized by congestive heart failure and pseudocyst formation

Chagas' Disease Life Cycle

Trypanosoma cruzi in blood

Relative sizes of various *Triatoma*
Schistosomiasis
- Protozoan (blood fluke) that can penetrate skin
- 200 million infected
- Main organisms:
 S. mansoni, S. haematobium, S. japonicum
- Transient swimmer’s itch then vascular
- Mate for life- lay millions of eggs that trigger immune reactions, renal failure (egg calcifications), splenomegaly, high BP, bladder and ureters

Schistosoma Transmission

Schistosoma (cont.)
Characteristic Schistosoma egg w/ spine

Schistosomiasis Life Cycle

Schistosomiasis
- Diagnosis, treatment, and prevention
 - **Diagnosis** based on identification of eggs in stool or urine sample
 - **Treat** with Praziquantel, the drug of choice
 - **Prevention** depends on avoiding potentially contaminated freshwater