
JSF Tags

Overview @author R.L. Martinez, Ph.D.

Java EE 7 provides a comprehensive list of JSF tags to support JSF web
development. The tags are represented in XHTML format on the server and are
converted into HTML and sent back to the client for rendering. These tags are
included in the libraries that will be added to your projects during development.

This tutorial will cover a number of useful JSF tags. For a complete listing of
available JSF tags consult the Oracle documentation at:

http://docs.oracle.com/javaee/7/javaserverfaces/2.2/vdldocs/facelets/

http://docs.oracle.com/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/index.html

http://docs.oracle.com/javaee/7/javaserverfaces/2.0/docs/pdldocs/facelets/

Let’s start by building a project in NetBeans to which we will add and test a
variety of JSF tags. Be prepared to carefully study this tutorial and devote the time
necessary to understand the material. In web development, we work in multiple
contexts (browser and servers) and therefore following code transitions can be
challenging at times. Like any skill, your proficiency will improve with time and
effort.

Starting with the TagsDemo Project

In NetBeans, select File | New Project and choose Java Web | Web Application and
then Next.

Page 1 of 34

http://docs.oracle.com/javaee/7/javaserverfaces/2.2/vdldocs/facelets/
http://docs.oracle.com/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/index.html
http://docs.oracle.com/javaee/7/javaserverfaces/2.0/docs/pdldocs/facelets/

JSF Tags

Name the project TagsDemo and modify the location and folder selection to reflect
where you store your projects for the course. Select Next.

Page 2 of 34

JSF Tags

No changes required below. Select Next.

Check the JavaServer Pages box to add the JSF framework and then select Finish.

Page 3 of 34

JSF Tags

After selecting Finish, the project is built and the index.xhtml appears with the
following minimal content.

It is essential that software developers work to improve their organizational skills.
Keeping files and folders organized and backed up is especially critical for web
developers due to the additional complexity introduced by deploying and
maintaining web-based solutions. Professional developers use software version
repositories that help manage code projects. However, a simple technique like that
described below can be used to backup projects and retain previous versions.
Suppose I have the TagDemo project with which we are currently working in the
folder G:\INEW2338\NetBeansProjects\ as shown.

A web developer not only wants to capture backups but we also want to retain
previous versions of the code. We can accomplish both by the simple technique of
R-clicking on the folder | Copy | Paste. The results of several copy and paste
operations are shown. The developer continues to work with TagDemo.

Page 4 of 34

JSF Tags

If at some point a developer would like to revert to a previous version of the
project (usually the most recent), s/he would delete the corrupt TagDemo and
rename TagDemo – Copy (3) to TagDemo and continue working with it. Better
solutions such as the GIT source code management system exits but simple copy
and paste operations will suffice for now.

Basic JSF Tags

The JSF basic tags provide coverage for many of the common web control
functionality requirements such as: checkboxes, radio buttons, links, textareas, and
quite a few more. Each of the JSF basic tags are processed by the servlet container
and sent back to the client browser as standard HTML elements. The conversion
results from JSF tag to HTML element can be viewed by R-clicking a page and
selecting View Source after it has been rendered. Let’s begin by adding and
discussing a few example controls.

Modify index.xhtml as shown.

Page 5 of 34

JSF Tags

Page 6 of 34

JSF Tags

The references on lines 6 and 7 provide namespace coverage and recognition for
the basic JSF tags in this example. Namespaces are primarily used to avoid name
collisions. There are a number of JSF tags used in index.xhtml and most are
discussed below. JSF tags are designed to render the HTML markup of its
corresponding element. For instance, the h:head and h:body tags (lines 8-10 and
11-60) will render HTML <head> and <body> elements.

A number of user input controls are included on the page and within the form
element. The value attributes of the UI controls are bound to data members of Java
classes using Expression Language (EL). EL provides the communication link
between UI components and their corresponding application logic. EL syntax is
#{class.method or class.datamember}. An example of EL can be seen on line 16:
#{textData.readOnlyTextData} where textData is the class (or object) and
readOnlyTextData is a data member of that object.

The h:form tag on line 14 performs the role of the HTML <form> element.
However, there is an important distinction between the JSF h:form tag and the
HTML <form> element. HTML forms are processed after the submit operation
(typically via a submit button). The form processing location (or file) is specified
by the action attribute. Form data is submitted to the form processor via either the
POST or GET method as specified by the method attribute.

On the other hand, JSF h:commandButton controls can not only serve as submit
buttons as in line 37 but controls can also be bound to component data or
functionality. For instance, each of the JSF input controls are bound to private data
in the TextData.java class. When data changes in the object, data in bound controls
is updated.

Also, notice the h:commandButton on lines 57-58. The action is set to call the
setTextAreadataAction method of the textData.java component. When the button is
clicked, the textAreadata is changed in the object by a call to the method
setTextAreadataAction(). The data change is reflected in the h:inputTextarea
control on lines 22-23. A call to setTextAreadata() would have performed the same
update but the Action function was included to demonstrate an additional function
beyond the mandatory getters and setters.

Page 7 of 34

JSF Tags

Other controls on the page include the h:selectManyCheckbox and the
h:selectOneRadio. Each of these is referencing their own managed bean
(checkBoxData.java and radioButtonData.java respectively). Now we need to code
the three managed beans used in the application.

By the way, in professional practice, I recommend that id attributes be set for all
components. JSF will automatically generate cryptic ids for components without an
id set. The component ids can be viewed by R-clicking a page and selecting View
Source after it has been rendered. Id’s are not included on all components in the
course to help reduce code on the page.

Add a Java class by R-clicking TagsDemo | New | Java Class… and make the
selections shown. Then click Finish.

Code CheckBoxData.java as shown.

Page 8 of 34

JSF Tags

Repeat the previous steps to create the RadioButtonData.java and TextData.java
classes in the com.mysite package.

Code RadioButtonData.java as shown.

Page 9 of 34

JSF Tags

Code TextData.java as shown.

Page 10 of 34

JSF Tags

Page 11 of 34

JSF Tags

The last file for this project is displayOutput.xhtml. Add it to the project by R-
clicking TagsDemo | New | XHTML. Enter code for the file as shown.

The TagsDemo project should look like the following in the Projects window.

Page 12 of 34

JSF Tags

Each of the classes added is a managed JavaBean (a.k.a managed bean). They
supply server-side, object-based support for the components on the browser. The
managed beans all have getter and setter methods which provide access to the
private data members. Managed beans must also be serializeable which enables
persistent storage by the container if necessary. Lines 16-23 of index.xhtml
demonstrate access to data members of the TextData class. The JSF input tags are
linked directly (bound) to data members in the object. Other bound controls on the
page include the h:selectManyCheckbox, h:selectOneRadio, and
h:commandButton.

Note: The term bound is used here to describe the link between the HTML element
(as rendered by the JSF tag) and the private data member of the referenced object.
There is also a “binding” attribute of some JSF basic tags that can be set which
binds to an entire object but that is not used in this tutorial.

Like the input tags, each of the other bound controls is linked to data in its
associated object. When the page loads, the getter method of the object is
automatically called for bound controls. On line 25, the h:selectManyCheckbox
control is tied to the string array named data on line 13 in CheckBoxData.java. An

Page 13 of 34

JSF Tags

array is required for this control since multiple selections can be made by the user.
Note that the values 1 and 3 are used to select the first and third checkboxes when
the page loads. The same behavior can be observed in RadioButtonData.java on
line 13 where the value 2 is used to select the second radio button.

Other JSF tags on the index.xhtml page include the h:panelGrid, f:facet, and
h:panelGroup which provide page layout options. Another important JSF tag which
is not included in this tutorial is the h:dataTable. It is covered in the JDBC tutorial.

Page 14 of 34

JSF Tags

R-click on index.xhtml in the Project window and select “Run File” to run the file.
The output is shown. Note that the controls are populated with the default values of
the private data members of the objects to which they are bound.

Next, select commandButton1 to see the output below.
Page 15 of 34

JSF Tags

Select the Back button to return to index.xhtml. Next, make a few changes to the
values of the controls on index.xhtml and then click commandButton1. Notice that
the changes are reflected in displayOutput.xhtml which is the action attribute value
of commandButton1 (see line 37 of index.xhtml).

Page 16 of 34

JSF Tags

In traditional web development, when another page is supplied as the value to the
action attribute of a form, a submit action is performed. By submitting the form, all
control name:value pairs are sent to a form processor destination as specified by
the action attribute. For instance, this form processor action attribute could be
JavaScript, PHP, or ASP.NET.

Notice the h:form control on line 14 of index.xhtml does not have an action
attribute. Form submissions are performed in JSF via the h:commandButton (and
h:commandLink) controls which do have action attributes. The
displayOutput.xhtml page (a form processor) is called from line 37.

When an h:commandButton is clicked a POST request is generated and all setters
for the data bindings on the form are called and the value of the action attribute is
performed. In the case of commandButton1, the action attribute is set to navigate to
displayOutput.xhtml. Alternatively, commandButton2 and 3 call methods in the
TextData.java managed bean.

The action for commandButton2 calls the setMuteableTextdata() method with an
argument of “muteable” which sets the value of the h:inputText control. The action

Page 17 of 34

JSF Tags

of commandButton3 calls the setTextAreadataAction method with an argument of
“testing 123” which sets the value of the h:inputTextarea control.

A couple of points are very important and deserve restating. Both of these points
are essential to understanding the way JSF controls operate. First, clicking an
h:commandButton on a form calls the setters of all data members located on that
form. If you wish to limit this behavior to specific controls, then use multiple
forms. Second, clicking an h:commandButton not only performs the action if it is a
method call as in the case of commandButton2 and 3, it also performs a POST of
the form which calls the setters of all data members on the form.

To observe other important behavior, navigate back to index.xhtml and click “link”
which is to the right of commandButton1. Selecting link issues a GET request for
the value of the outcome attribute which is displayOutput in this case. By clicking
“link” we confirm that the initial values of data members are displayed. On the
other hand, when commandButton1 is clicked, the data changes made on
index.xhtml are reflected in displayOutput.xhtml since a POST is performed and
the data setters are called.

The initial values are displayed with the link control for two reasons: a GET
request was issued and all managed beans in this tutorial have their scope set to
@RequestScoped. Line 9 (@RequestScoped) specifies that the lifetime of the bean
is limited to a single request. If we wanted data values to endure longer (e.g. while
the session is active), we could use @SessionScoped. More scope alternatives are
reviewed in an upcoming module.

Steps to Enhance JSF Control Understanding

Before beginning the practice steps, it may be helpful to increase the session
timeout duration of your application. The default is 30 minutes which will likely
produce a view timeout error like the following during development and testing.

Page 18 of 34

JSF Tags

To minimize the view timeout errors, increase the session-timeout value in
web.xml to a value higher than 30 minutes. It is increased to 330 in the excerpt
below.

Perform these steps to observe important form, variable, control, and method
behavior. You will likely benefit by working through the examples several times
since the concepts are a bit involved. It is not necessary to develop perfect
understanding of the steps and responses at this point. Rather, it is important to
diligently consider the code and event responses. Also, you are encouraged to code
the examples and observe the behavior directly.

1. R-click index.xhtml in the Project window to run the file which produces
output as shown. Verify that all controls are set to initial values obtained by
executing the getters for each EL data reference. See the class files to
confirm the initial values.

Page 19 of 34

JSF Tags

2. Make the following changes to the form. Change the content of the second
text box to “HELLO”, the text in the text area to “SUPER!”, and select all
three check boxes. Make the changes as shown.

Page 20 of 34

JSF Tags

Page 21 of 34

JSF Tags

3. After making the changes above, click commandButton1 to submit the form
to displayOutput.xhtml which is shown. Notice that SUPER! and the second
check box were submitted but the text in the text box was not changed to
HELLO. Do you know why? Here’s a hint: It is the same reason that the
password is not displayed. Pause a few minutes and see if you can answer
that… Well, the text for that text box actually was changed.

However, the h:inputText controls on line 18 and on line 46 of index.xhtml
are bound to the same value. The default value still contained in line 46 was
used to populate the EL on line 12 of displayOutput.xhtml. Observe the
other EL contained in displayOutput.xhtml and ensure that you understand
the corresponding relationship between the EL and the output shown.

4. Select the Back button on the page to navigate back to index.xhtml which is
shown. Notice that the changes are retained since most browsers use cache
(file or in-memory) content for the Back button.

Page 22 of 34

JSF Tags

5. Now select “link” (to the right of commandButton1) which navigates to
displayOutput.xhtml. Notice that all initial data from the classes is displayed.

Page 23 of 34

JSF Tags

The changes previously made are not reflected. Why? Again, see if you can
answer the question by inspecting the code… The reason the changes are not
reflected is that the page was acccessed via an h:link and not an
h:commandButton. Also, notice that the value “password” is displayed but
does not appear when commandButton1 is pressed. Why? The same output
is shown when index.xhtml is refreshed (confirm by selecting F5 in Chrome
– more on this with item 7 below).

The h:commandButton controls submit a POST while an h:link simply
navigates to the outcome. Furthermore, each of the classes have
@RequestScoped specified on line 9 which means the objects only have
request lifetime and do not endure across requests. If you wanted longer-
lived data, you could use @SessionScoped. However, @RequestScoped is
usually the best choice for UI bound data members.

Page 24 of 34

JSF Tags

6. Select the Back button to see the original page with changes again. Recall
that the Back button does not force a request to the server but rather is
rendered from cache.

Page 25 of 34

JSF Tags

7. Select F5 to refresh the page and see the beginning page again. When F5 is

clicked in Chrome (the browser used in this tutorial) it issues a “Cache-
Control: max-age=0” header in the request to the server which forces a
reload of the page. Notice the controls are set to the initial values specified
in the classes. The same header does not force a reload in Firefox.

To obtain the full “refresh” behavior in Firefox, the Ctrl-F5 combination is
required which adds headers “Cache-Control: no-cache” and “Pragma: no-
cache” to the request. Browser variations introduce complications and can
make web development particularly challenging. Fortunately in this course,
accounting for browser deviations is not required.

Page 26 of 34

JSF Tags

Page 27 of 34

JSF Tags

8. Click commandButton2 to see the output below. Notice that the text box
value has been changed to “muteable” by the method call on line 52 which
also changes the value of the control on line 18. Also notice that the first
h:inputSecret control is now blank. Why? Based on previous examples, you
have enough information to answer.

Page 28 of 34

JSF Tags

9. Now replace the word awesome in the text area with SUPER and press F5 to
refresh the page. SUPER becomes awesome again. Why? Selecting F5
produces the dialog shown. However, this dialog did not appear when F5
was pressed in step 7. Why? F5 in step 7 issued a GET request and pressing
F5 “after” selecting commandButton2 reissues the POST request that was
sent by commandButton2.

A GET request does not produce the dialog box. See the highlight “any
action you took to be repeated” in the dialog. The POST action and the call
to method setMuteableTextdata are both repeated. Recall from above that
h:commandButtons submit POSTs in addition to another action specified by
the action attribute (see line 52).

Page 29 of 34

JSF Tags

10. Let’s perform another test. Click in the address bar and press Enter which
will force a full refresh (an original GET request to the server in this case).

11. Press commandButton2 followed by commandButton3 which will produce
the output shown.

Page 30 of 34

JSF Tags

12. Now change “testing 123” and the “muteable” text with the blue star to
“Java EE is cool!” After making those two changes, press commandButton3

Page 31 of 34

JSF Tags

to see the output below. Explain why both h:inputText controls retain the
“Java EE is cool!” setting while the h:inputTextarea changes back to “testing
123”.

Page 32 of 34

JSF Tags

13. Work through these steps and those of your own to ensure you understand
JSF control behavior.

Facelets Tags

Facelets is a view definition language specification that supports creation of
templates in JSF. Unlike other web development platforms, the JSF templates
created with Facelets tags are dynamically constructed at runtime. The contents are
inserted into templates instead of the design-time approach which uses the template
to build all dependent pages during development. The Facelets runtime method
dramatically reduces the HTML markup required by the site since the template is
not replicated across all pages that use it.

Common Facelets tags are listed in the table. Most are demonstrated in a
subsequent module.

Tag Purpose
ui:insert Specifies template editable region (in template)
ui:define Defines the content to be inserted (in client)
ui:composition Specifies template to use or default content
ui:include Specifies file to include
ui:param Used to pass named objects between Facelets

Convertor Tags

Convertor tags provide methods to perform common conversions of strings to
dates and strings to numbers. The date and number convertor tags are demonstrated
in a subsequent module.

Tag Purpose
f:convertDateTime Converts String to Date of specified format
f:convertNumber Converts String to Number of specified format
Custom Used to create a custom convertor

Page 33 of 34

JSF Tags

Validation Tags

Validation tags provide system-level checks for common validation tasks. See the
links at the top of this tutorial for examples of validation tag implementations.

Tag Purpose
f:validateLength Validates String length
f:validateLongRange Validates numeric range of a long value
f:validateDoubleRange Validates numeric range of a float value
f:validateRegex Validates regular expressions
Custom Used to create a custom validator

Page 34 of 34

