
Templates in Java EE 7

Overview @author R.L. Martinez, Ph.D.

The following tutorial consists of steps to create a new Java EE 7 project named
TemplateDemo. Templates are useful constructs which can greatly enhance
developer productivity. In Java EE 7, templates are enabled using the JavaServer
Faces framework (JSF).

JSF is a Java EE framework for web user interface development with supports the
Model-View-Controller (MVC) pattern. MVC is an approach that separates
application data (model) from the user interface (view) and the application logic
(controller). Beginning with JSF version 2.0, the page definition language can use
Facelets which is based on well-formed xml pages instead of JSP with previous
versions of JSF.

Creating and Using Java EE 7 Templates

Java EE 7 templates offer a considerable advantage over other template systems
such as .dwt (Dreamweaver Web Templates or Dynamic Web Templates). In Java
EE 7, the templates are dynamically assembled at runtime compared to the
template static assembly at design time in other models. When using the .dwt
model, templates are used to construct and then store each resulting page. So, if a
template is used with 10 pages, each of those 10 pages has copies of the template
HTML markup. With Java EE 7 on the other hand, the servlet container (Undertow
in WildFly; Catalina in many Java web servers) combines the templates and clients
at runtime. Therefore, the clients do not contain template code until runtime.
Maintenance and storage are much more efficient with the Java EE 7 approach.

You may notice that NetBeans and the projects are installed on drive N:\, a USB
flash drive. However, this is only done for portability and testing. It is strongly
recommended that you install NetBeans and all other required software on the
local C: drive. The configurations are much easier to manage and troubleshoot
when all components are installed on C:\.

Also, you should be using the latest version of all development software listed in
the tutorials. For instance, in the images below replace N:\NetBeans 7.4\projects
with C:\NetBeans X.X\projects where X.X is the latest version. The same applies
to the JDK, MySQL, JSF, phpMyAdmin, Spring MVC, etc. If significant

Page 1 of 19

Templates in Java EE 7

discrepancies between the versions shown and the latest then the divergences will
be noted.

It is important to follow the steps very precisely to help reduce the chances for
incorrect configurations and errors. Be patient and take your time. Also, repeating
the tutorials in the course for practice will reinforce the concepts, enhance
understanding, and improve skills.

Steps:

Create a new project by clicking the New Project button, making the selections,
and then click Next.

Page 2 of 19

Templates in Java EE 7

Make selections like those shown (your location/folder will likely be different) and
then click Next.

Make selections like those shown and then click Next. Notice the WildFly Server
and Java EE 7 Web items are selected.

The next dialog box presents an opportunity to add framework(s) to the
application. Select JavaServer Faces.

Page 3 of 19

Templates in Java EE 7

The configuration tab should reflect the options shown. Starting with JSF version
2.0, JSF can (and should) be constructed using Facelets as the preferred page view
definition language. The older and less preferred JSP model is also possible.
However, Facelets is the superior method since it is based on well-formed xhtml
pages, template coding and processing is much improved, and Facelets do not
employ the embedded Java code within the view page model used by JSP.

Page 4 of 19

Templates in Java EE 7

For this project, a component suite will not be added under the Components tab.
We will add and use the PrimeFaces component suite in another tutorial. The
component suites offer user interface functionality (components) beyond those
offered by default with JSF.

Select Finish in the New Web Application dialog. Review the project structure
created by NetBeans for this Java web application based on Java EE 7, deployed
on the WildFly server, and using the JSF framework. An index.xhtml and web.xml
files were generated by NetBeans. The Project window offers a logical view of the
project structure. Actual physical directory locations (as shown in the Files
window) will be different from the virtual directory structure in the Projects
window. Note that web.xml appears in two logical locations (Configuration Files
and Web Pages/WEB-INF).

Page 5 of 19

Templates in Java EE 7

View the file and directory structure by selecting the Files window. Notice the
locations of two files with which we will work, index.xhtml and web.xml. In
particular, web.xml is depicted in its actual physical directory location of
web/WEB-INF/web.xml. Also, index.xhtml is shown in web/index.xhtml. Keep in
mind that the /faces/* URL pattern was specified when creating the project. This
can be observed in web.xml on lines 17 and 25. More on this when web.xml is
discussed after reviewing index.html.

Page 6 of 19

Templates in Java EE 7

The starting index.xhtml is shown which should be automatically opened when the
project was created. Notice the <h:…> tags. The h: is referred to as a name prefix
and is used in xhtml pages to prevent naming conflicts. When name prefixes are
used, an xml namespace (xmlns) must be defined which is accomplished on line 5.
More on this when additional name prefixes are utilized.

More here:

http://www.w3schools.com/xml/xml_namespaces.asp

Page 7 of 19

http://www.w3schools.com/xml/xml_namespaces.asp

Templates in Java EE 7

Double-click web.xml to open the file. The file was automatically created by
NetBeans to establish configuration information for using JSF with Facelets.
Notice on line 17 that the URL pattern used by the application is /faces/* which
was the default specified during project creation. Also notice on line 25 that the
welcome-file is faces/index.xhtml. The welcome file is the file that the server
responds with when the site (web application) is accessed by the site top-level
URL (e.g. java.net, jcp.org, java.com). From the Project window review above,
recall that the actual physical directory location of the file is web/index.xhmtl. The
faces/index.xhtml logical association is accomplished by JSF.

Page 8 of 19

Templates in Java EE 7

R-click TemplateDemo in the Project window and select Run to see the output
below. Notice that the top-level URL is used to access the application when Run is
selected.

To confirm that the faces/index.xhtml welcome-file is being served, the full logical
URL to the file can be specified to see the following output which is the same page
as served above.

Page 9 of 19

Templates in Java EE 7

Now that that the fundamental project structure is in place, we are ready to add a
Facelets Template. After adding a template to the project, we will add Facelets
Template Clients that use the template.

R-click TemplateDemo in the Projects window and select New | Facelets
Template. If Facelets Template does not appear as an option you may need to
select Other at the bottom of the fly-out menu and then JavaServer Faces | Facelets
Template like shown. Select Next.

Make the selections as shown in the New Facelets Template dialog. The templates
folder will be created under the Web Pages virtual folder (and the web physical
folder). There are eight beginning/common layouts from which to choose. Select

Page 10 of 19

Templates in Java EE 7

the one depicted which includes a header, left navigation, content, and footer areas.
JSF refers to these areas as top, left, content, and bottom. A developer can start
with any of the samples shown and modify the template later. Select Finish.

Notice in the Projects window that two new folders are added, resources and
templates. The templates folder contains the mainTemplate.xhtml we just created
and will inspect shortly.

The resources folder contains the css folder which contains two CSS files
automatically generated by NetBeans which we will review soon. The CSS files
provide starting style rules for the mainTemplate. For instance, we should expect

Page 11 of 19

Templates in Java EE 7

to find CSS rules for style properties associated with the top, left, content, and
bottom areas of the template.

The mainTemplate.xhtml file should be open and appear like that shown. On line
5, a namespace for a name prefix (ui:) is specified. The ui: name prefix is part of
the Facelets namespace. The ui: name prefix is used in the file to identify insert
areas into which template clients can insert custom content.

The ui: prefixes are used on lines 18, 22, 25, and 29. The areas coincide with top,
left, content, and bottom portions of the page. By specifying <ui: insert…>,
template clients can potentially provide their own content for those areas. ui;
prefixes are also used in template clients but the clients use <ui: define…> instead
of <ui: insert…>.

Notice the two JSF outputStylesheet tags on lines 10 and 11. These tags render
HTML link elements of type text/css which refer to the CSS style sheets
automatically created by NetBeans and used by the page.

Page 12 of 19

Templates in Java EE 7

Now that we have a template, we are now ready to create a Facelets Template
Client. R-click TemplateDemo in the Project Window and select Facelets Template
Client. If it does not appear in the fly-out menu select Other | JavaServer Faces |
Facelets Template Client and then Next.

Page 13 of 19

Templates in Java EE 7

Make the selections shown. Note that this file, firstTemplateClient.xhtml, will be
based on the mainTemplate.xhtml template.

Page 14 of 19

Templates in Java EE 7

The firstTemplateClient.xhtml is created, opened, and is as shown. Notice the top,
left, content, and bottom ui: define sections that were automatically created by
NetBeans. These are the same sections contained within mainTemplate.xhtml upon
which the firstTemplateClient.xhtml is based. In the current example, each of the
ui: define tags on the client has a corresponding ui: insert tag in the template.
Notice the template relationship is established on line 9 by referencing
mainTemplate.xhtml via a ui: composition tag and the template property.

Page 15 of 19

Templates in Java EE 7

Let’s test the relationship between the template and the client by R-clicking
firstTemplateClient.xhtml and selecting Run. The resulting page is shown below.
Notice that the sections top, left, content, and bottom are displayed. The colors and
positions of the sections are determined by the CSS files referenced on lines 10 and
11 of mainTemplate.xhtml

Page 16 of 19

Templates in Java EE 7

The CSS files are in the web/resources/css folder. A partial listing of cssLayout.css
is shown. The id selectors top and bottom are shown. The file also contains id
selectors for left and right even though right is not used in the mainTemplate.xhtml
or in firstTemplateClient.xhtml. The top id selector is used to apply styles to the
div in mainTemplate.xhtml with the id="top". To see the effect of a simple change
to the top div change the background-color to red as shown on line 4 in the CSS
file.

Notice that the top div now has a red background. Restore the default setting by
uncommenting line 3 and removing line 4.

Page 17 of 19

Templates in Java EE 7

Let’s make another change to better understand templates. Comment the bottom
section in firstTemplateClient.xhtml as shown (lines 23-25).

Refresh the page and notice that bottom is still there. However, something is
different. The content in the bottom section (the innerhtml) now has an uppercase
B. Why? Look at the bottom div in mainTemplate.xhtml (lines 28-30). It is spelled
with an uppercase B. This confirms that HTML markup in the template file will be
rendered unless overridden by that of the client.

What happens in the converse situation? That is, what will occur if the client
contains ui: define sections that do not have corresponding ui: insert tags in the
template? Items that appear within the ui: composition tags in the client but do not
have corresponding ui: insert tags in the template are ignored. However, elements
outside of the ui: composition tag are rendered. Remove the comments from lines
23-25 and save.

Page 18 of 19

Templates in Java EE 7

Now that we have used JSF and Facelets to create a template and a template client
that uses the template, we are ready to expand coverage of JSF by working with a
component suite of user interface controls. In the next tutorial, the Primefaces
component suite is added to the project to extend the user interface capabilities of
JSF.

Page 19 of 19

