
Using JSF and JDBC to Access a MySQL Database

Page 1 of 28

Overview @author R.L. Martinez, Ph.D.

In 1994, a number of database vendors began to release software drivers adhering
to the Open Database Connectivity (ODBC) specification which enabled
connection to their database servers from a variety of sources. The ODBC
specification provided the open standards which supported various client-to-
database connectivity solutions. Developers could use ODBC drivers to connect to
their database of choice. However, the connection ubiquity and convenience of
ODBC came at the price of excessive driver size and degraded performance. To
improve connections, database vendors worked to produce drivers that were
environment specific. JDBC was developed in response to the ODBC limitations
and has evolved into four types of drivers.

Java Database Connectivity (JDBC)

The four types of JDBC drivers are listed in the table.

Four Types of JDBC Drivers
Type Description

1

Drivers that implement the JDBC API as a mapping to another data access
API, such as ODBC (Open Database Connectivity). Drivers of this type are
generally dependent on a native library, which limits their portability. The
JDBC-ODBC Bridge is an example of a Type 1 driver.

2

Drivers that are written partly in the Java programming language and partly
in native code. These drivers use a native client library specific to the data
source to which they connect. Again, because of the native code, their
portability is limited. Oracle's OCI (Oracle Call Interface) client-side driver
is an example of a Type 2 driver.

3
Drivers that use a pure Java client and communicate with a middleware
server using a database-independent protocol. The middleware server then
communicates the client's requests to the data source.

4 Drivers that are pure Java and implement the network protocol for a
specific data source. The client connects directly to the data source.

Note: The JDBC-ODBC Bridge should be considered a transitional solution. It is
not supported by Oracle. Consider using this only if your DBMS does not offer a
Java-only JDBC driver.

Note: the descriptions above are from Oracle:
http://docs.oracle.com/javase/tutorial/jdbc/basics/gettingstarted.html

http://docs.oracle.com/javase/tutorial/jdbc/basics/gettingstarted.html

Using JSF and JDBC to Access a MySQL Database

Page 2 of 28

The Connector/J driver which is the specific API for Java to MySQL
communication is a Type 4 driver. When developing with Java and accessing a
database, a Type 4 driver should be selected if available. It should be noted in the
table above that the word client, for web development, refers to software on the
web server which acts as a client connecting to the database host. Clients are often
considered the device on which the browser is installed but in the table above the
client software is in relation to the database server and not the web server.

JDBC Web Architectrure

The basic web architecture of JDBC is shown in the diagram below. Java programs
running on the server use a driver developed specifically for the Relational
Database Management System (RDBMS) vendor (usually by each vendor). As
shown, Connector/J is the driver of choice when using Java to connect to MySQL.
Note that there is a client running a browser. There is also “client” code (with
respect to the database) running on the web server as discussed above.

If the code type running on the server in the diagram were changed from Java to
another server-side web programming platform, then the drivers listed would also
need to change. For instance, if the server code were PHP or ASP.NET, then the
driver to connect to MySQL would be mysqlnd or Connector/NET respectively.
All of the drivers listed, Connector/J, OJDBC, mysqlnd, and Connector/NET are
JDBC drivers. Each driver supplies a solution for specific client and database
connection point combinations.

Using JSF and JDBC to Access a MySQL Database

Page 3 of 28

Create Read Update Delete (CRUD)

The four primary activities associated with most databases are create, read, update,
and delete. Records are created in the database with an insert statement (or batch
data loads). Data is read from the database using select statements. Update and
delete statements complete the foursome. The combination of the four have
become known as CRUD (an albeit non-flattering but easy to remember acronym).
The web application in this tutorial uses the JSF framework and JDBC to
implement and demonstrate each of these four operations.

Since this is the third portion of an advanced Java course (third in a series of three
courses), only the code specific to JSF and JDBC is addressed with a possible few
exceptions. Furthermore, topics covered in previous modules in this course will not
be reviewed. For instance, the h:commandButton control appears on the
index.xhtml page. Since it was discussed (at length) in the JSFTags tutorial, it will

Using JSF and JDBC to Access a MySQL Database

Page 4 of 28

not be explicated again. It might be beneficial for the student to review previous
modules in the course in addition to the JSP modules in course ITSE 2317
Intermediate Java.

JSF-JDBC Architecture

The architecture of the JSF-JDBC application to be developed in this tutorial is
shown in the diagram below. MVC stands for Model-View-Controller which is a
software design pattern that will be reviewed in the next tutorial. For now, observe
the various components of the application. Each of the CRUD operations will have
a managed bean which will act as a controller, sending requests to the database
(model), updating the Person bean local in-memory storage (model), and making
the data available to index.xhtml (view).

Developing the JSF-JDBC Web Application

In the DatabaseSetup tutorial we accomplished the following:

Using JSF and JDBC to Access a MySQL Database

Page 5 of 28

1. Created the falconnight database in MySQL
2. Created a connection (and connection string) to falconnight in NetBeans

The next step is to develop the JSF-JDBC web application (henceforth known as
JSF-JDBC) which will utilize the work we did in the DatabaseSetup tutorial.
Recall that the falconnight database contains four tables. JSF-JDBC only uses the
person table from the database. The hobby table is required for an assignment in
the course. The person-hobby and person-history tables were only supplied for
educational purposes. The People web page shown is the output of the JSF-JDBC
web application which we build below.

Using JSF and JDBC to Access a MySQL Database

Page 6 of 28

1. Create a new project in NetBeans by File | New Project | Java Web | Web
Application | Next.

Using JSF and JDBC to Access a MySQL Database

Page 7 of 28

2. Make the appropriate selections. Be sure to organize your work. Superior
organization of files/folders/proects/and other work is esstential for the
professional web developer.

Using JSF and JDBC to Access a MySQL Database

Page 8 of 28

3. Make the appropriate selections in the Server and Settings dialog. This
tutorial uses the WildFly web server. While other alternatives exists such as
TomEE and GlassFish, WildFly is fully Java EE 7 compliant, certified, and
is very fast.

Using JSF and JDBC to Access a MySQL Database

Page 9 of 28

4. Select the JSF framework | Finish.

5. Take this opportunity to confirm the project structure that NetBeans has
built. The index.xhtml is familiar from previous tutorials and will be
replaced shortly. The expanded project window is shown. We will be adding
the com.mysite package and five files therein.

Using JSF and JDBC to Access a MySQL Database

Page 10 of 28

Using JSF and JDBC to Access a MySQL Database

Page 11 of 28

6. Double-click to open web.xml. The content should appear like that shown.
Also, I recommend that the session-timeout be increased to avoid
unneccessary timeout issues during development and testing.

Using JSF and JDBC to Access a MySQL Database

Page 12 of 28

7. R-click the Web Pages folder in the Projects window | New | Folder | name
the folder resources. R-click the resources folder | New | Folder | css. R-click
the css folder | New | Other | HTML5 | Cascading Style Sheet | Next | name
the file falconnight-styles.css | Finish.

8. By creating the directory structure as shown, the file is accessible from line
9 of index.xhtml via the library attribute.

Using JSF and JDBC to Access a MySQL Database

Page 13 of 28

9. Modify the falconnight-
styles.css file as shown.

Using JSF and JDBC to Access a MySQL Database

Page 14 of 28

10. Modify the index.xhtml file
as shown. We will discuss
the code in index.xhtml and
the .java files after the code
is depicted (written).

Using JSF and JDBC to Access a MySQL Database

Page 15 of 28

11. R-click on JSF-JDBC in the Project window | New | Java Class. Make
settings as shown.

Using JSF and JDBC to Access a MySQL Database

Page 16 of 28

12. Modify Person.java as shown.

Using JSF and JDBC to Access a MySQL Database

Page 17 of 28

13. Repeat step 11 for CreateBean.java, ReadBean.java, UpdateBean.java, and
DeleteBean.java. Your project directory tree structure should look like the
following.

14. Modify the four managed bean files per the code provided below. Note that
you have created a backing bean (or managed bean) for each of the four
CRUD operations. The Person.java bean is used for intermediary storage of
record data.

NOTE: In the four class files that follow, replace the line:

@Resource (lookup = “java:jboss/datasources/falconnight”)

with:

@Resource (lookup = “java:jboss/datasources/MySQLDS”)

Using JSF and JDBC to Access a MySQL Database

Page 18 of 28

Using JSF and JDBC to Access a MySQL Database

Page 19 of 28

Using JSF and JDBC to Access a MySQL Database

Page 20 of 28

Using JSF and JDBC to Access a MySQL Database

Page 21 of 28

Using JSF and JDBC to Access a MySQL Database

Page 22 of 28

15. After database and connection setup and coding the eight project files, we
are ready to test the application. R-click on index.xhtml | Run File. You
should see the output below.

Using JSF and JDBC to Access a MySQL Database

Page 23 of 28

Code Review

Now let’s discuss the code. If you have two monitors, you should open the code
view in one and the discussion in another. Or, print the discussion and review the
document while reviewing the code on the monitor (or vice versa). The first
observation is to review the application output shown on the People page above.
Notice that each CRUD operation is segmented on the page using <fieldset>
elements and named with <legend> elements. Correlate each of the <fieldset>
elements on the output page with the code that produces it in index.xhtml. For
instance, the create output is produced by lines 16-24, and the read output by lines
24-58, etc. What is the source of the initial values Enter Name and Enter Nickname
for the text controls? See if you can find the logical answer to that question.

There are three forms on the page; one for create, update, and delete. The read
operation does not require a form because there is no submission to the database by
the select statement. The application could use only one form. However, it is
preferable to use three in this case. Do you recall why three forms are more
appropriate than one in this case? Go back and review the JSFTags tutorial if that
is not clear.

By the way, if you have questions about a particular topic you should be quick to
conduct research. For instance, I am not going into further detail about the HTML
<fieldset> element. If the element is new to you, its purpose should be somewhat
evident by simple observation. However, if you have questions, there are vast
resources within a few keystrokes. My search for html fieldset returned 14 million
hits in 0.22 seconds. Any of the first ten results are helpful. We are so fortunate in
the 21st century to have much of the world’s body of knowledge at our finger tips.
If your “Google-Fu” is not yet strong, you should work to change that.

Correlate the three controls on the jdbcCreateForm with those shown on the People
page. There are two h:inputText tags and one h:commandButton. The text tags are
bound to data elements in the CreateBean managed bean via the EL. Can you
locate the reason the beans are referenced with a lowercase letter even though their
names begin with capitals? The line of code that answers that question exists in
each of the beans.

Using JSF and JDBC to Access a MySQL Database

Page 24 of 28

 This is the first time we have seen the double dot operator in the course. Recall
from your studies in prerequisite courses that objects can contain three things:
functionality (methods), data, and other objects. Just as the single dot operator
provides access to object methods and data, the first dot operator provides access
to an object contained within another object and the second dot operator provides
access to methods and data within the contained object.

Take a look at the CreateBean.java code. Notice on line 19 an object of type
Person is created named person. That is the object and its data that is referenced on
lines 19-20 of index.xhtml. Review Person.java to see the familiar structure of a
JSF managed bean. The Person class is made serializeable which means that the
container can convert the object into a string and move it to persistent storage if
necessary. We are not working directly with serialization in this course but the
servlet container (WildFly) may perform serialization as necessary as it manages
resources. That is one of the reasons the objects are referred to as managed beans.

The Person class contains four data elements; all of which are made private to
remain consistent with the information hiding principles of object orientation and
the need-to-know principle of security management. Each of the data elements
have the required getters and setters. Do you recall when the getters and setters are
called? Recollect from the JSFTags tutorial that JSF automatically calls the getter
method when the bound control is processed on index.xhtml and the setter is called
upon form submission.

The jdbcUpdateForm and jdbcDeleteForm both use the same approach as that
reviewed in jdbcCreateForm. That is, instantiate a person object in the bean for
intermediate storage, bind JSF controls on index.xhmtl to object data elements,
populate the JSF elements with object data, and update the object data when the
form is submitted by the h:commandButton which calls the “perform” method of
each object.

Back to CreateBean. Lines 11 and 12 utilize a powerful concept known as Context
and Dependency Injection (CDI). CDI was introduced with Java EE 6 in Dec2009.
The @Named annotation is used to specify the name that other components of the
application will use to access the managed bean. The value property is optional but
is supplied here for semantic and declarative purposes. Note that createBean has a

Using JSF and JDBC to Access a MySQL Database

Page 25 of 28

lowercase c. If a value is not supplied, the @Named property will be implicitly
assigned the name of the bean with the first letter as lowercase which is what was
supplied in value. So, one can infer that value is useful to divert from the default.
The @RequestScoped CDI annotation has been previously discussed.

 On line 16 an elegant capability is demonstrated known as resource (or
dependency) injection. Resource injection is also part of the CDI specification. In
the injection on line 16, the resource being injected by JSF is the JNDI name
“java:jboss/datasources/MySQLDS”. Recall that this is the name of the JDBC
resource we created in the MySQL local tutorial. That JDBC resource also
implements a connection pool. JNDI uses a software design pattern known as
service locator. When the service locator pattern is used, the service details are
maintained by a central repository or registry. For our purposes, that is WildFly.

Since the resource was established and registered in WildFly, it can simply be
“injected” into the managed bean with the one line of code (line 16). Without
resource injection, a context object would be required and something like the
following would be required to obtain a DataSource object dynamically:

Let’s move ahead. The performCreate() method on line 29 is called from line 22
index.xhtml when the h:commandButton is selected. On line 33 a Connection
object is instantiated from the DataSource object which is mapped to a pool
resource in WildFly.

Just as resource injection and the use of a context object provide different
approaches to obtaining a DataSource, we also have an alternative to the
DataSource object itself. The older, less preferred approach would be to establish a
database connection using the DriverManager object which would look like this:

Using JSF and JDBC to Access a MySQL Database

Page 26 of 28

Note the undesirable exposure of the username and password in the argument list.

By working with a DataSource object, the application does not require knowledge
of the properties required to connect to the database such as username, password,
or URL. Those properties were registered with the container and are therefore
available with a simple resource injection reference or use of a context object.

Lines 37-38 of CreateBean convert a Java date to a SQL date. The conversion is
required due to incompatibilities between the two formats. Line 39 is the SQL
statement used to insert a record into the person table. Based on your knowledge of
the person table, can you determine why the value of NULL is supplied?

The code on line 40 creates a prepared statement from the SQL supplied on line
39. Prepared statements should always be used prior to sending SQL to the
database. They perform the important role of preventing the very dangerous
hacking attack known as SQL injection. Prepared statements consist of two steps.

The first step is performed on line 40 which sends the SQL to the database server
for syntax checking and compilation. The next step is performed on line 45 which
executes the query. The three question marks in the argument list (known as
anonymous, positional placeholders) in line 39 correspond to the values 1, 2, and 3
in lines 41-43. Notice that the values are extracted from the person object using the
appropriate methods. Recall that the person object of the createBean contains data
from the controls in the jdbcCreateForm on index.xhtml when performCreate() is
called. Test the create operation by entering a new name and nickname and
clicking Create. Notice the new in the Read table on the page.

Let’s now consider the Read section on index.xhtml which is between lines 25-58.
Read uses an h:dataTable control which provides a quickly way to display data in
table format. The contents of the h:dataTable are populated by the value attribute
which is performRead() method of the readBean managed bean. The var attribute
is used to set an alias for the h:dataTable. The class attributes are CSS settings
which are stored in the CSS file linked on line 9.

Using JSF and JDBC to Access a MySQL Database

Page 27 of 28

There are four columns specified for the table and each has an f:facet which are
used to associate a name with container components. Values for the data elements
are supplied by results from the call to the performRead() method which executes a
database select query. The performRead() method returns a list of person objects.
The list object is declared on line 25 of ReadBean.java, instantiated with an
ArrayList on line 33, and populated with a person object with each iterative call to
add() on line 40.

A new person object is created for each row of the ResultSet returned by the
executeQuery() method. A ResultSet is a collection of database records (rows)
returned by the query operation. Note that ReadBean.java uses executeQuery() but
the other three CRUD operations use executeUpdate(). executeUpdate() actually
performs a change to the database whereas executeQuery() just reads from the
database.

There is one more point to make about the Create code in index.xhtml. On line 54
a convertor JSF tag is used to reformat the SQL date into that shown. The standard
SQL date is displayed as numerically as “YYYY-MM-DD” followed by the time.
The convertor tag outputs the date in the format specified.

The UpdateBean.java and DeleteBean.java managed beans are very similar to the
code already reviewed for CreateBean.java. The notable exception is that
appropriate update and delete SQL statements are executed in the respective beans.
By the way, the System.out.println() statements can be viewed in the console
output to confirm expected operations.

That’s it for our current discussion of the JSF-JDBC web application. We will
revisit the project again in the MVC tutorial where we take a closer look at some of
the architectural benefits provided by the JSF framework.

Assignment Output

This is the output that should result from the JSF-JDBC assignment. The
assignment details are in Blackboard.

Using JSF and JDBC to Access a MySQL Database

Page 28 of 28

@author R.L. Martinez, Ph.D.

