
MVC in JSF and Spring

Page 1 of 21

Overview @author R.L. Martinez, Ph.D.

Complexity is one of the primary challenges that has troubled software developers
from the inception of the discipline. Software systems designed to perform
multifaceted tasks are by nature complicated. Furthermore, software complexity
continues to increase as we ask systems to accomplish more. With that in mind,
designers are regularly pursuing techniques and methods to help reduce, or at least
control, complexity growth. One such approach is known as MVC or, Model-
View-Controller.

Model-View-Controller

MVC has its origins at Xerox’s PARC (Palo Alto Research Center) during the
1970-80’s. While there, Trygve Reenskaug, a visiting researcher from Norway,
along with others such as Adele Goldberg, developed the MVC pattern for
conceptualizing user interface based programs. PARC was an active site at that
time for other important developments such as the graphical pointing device
(mouse) and Object Oriented Programming (OOP). The first published work
dealing with MVC at length was a 1988 article in The Journal of Object
Technology.

In software development terminology, MVC is known as an architectural pattern.
A pattern is a reproducible and reusable construct which appears often enough in
computer science as to be recognized. Instead of solving the same problem in a
variety of sub-optimal ways, a pattern attempts to overlay a design with a common
architectural solution. Developers not only become familiar with its application,
but can also more easily understand a solution that uses a familiar pattern. There
are a number of popular web application frameworks that offer MVC architectures
which include: ASP.NET, Ruby on Rails, Zend Framework, Spring-MVC, etc.

The key concepts driving MVC are easily understood. The pattern’s simplicity is a
compellingly favorable attribute for those considering its use. It should be noted
that there are a number of interpretations of MVC which have evolved over the
years. The pattern has been transformed to fulfill the needs of various applications.

For instance, while MVC was originally developed for the desktop environment,
many web architectures currently utilize it. The descriptions and depictions herein

MVC in JSF and Spring

Page 2 of 21

are example approaches. The pattern can be customized to fulfill the needs of the
system being designed.

General MVC

Observe a few things about the pattern in the diagram. Notice that requests from a
client are trafficked through the controller and on to model and/or view. An
alternative view of the architecture may depict a direct connection between the
model and the view. If present, that connection could represent stored procedures,
functions, or triggers set in the database. Given time and breadth constraints, stored
procedures, functions, and triggers are not covered in this course. More variations
on the MVC theme are introduced below.

In the first diagram shown, the controller acts as the conduit and facilitator
between the other components. For instance, if the browser submits an HTTP
request for data from the database, the controller interfaces with the model
(database), obtains a dataset, sends that data to the view which supplies the output
formatted as an HTTP response.

Notice that the model typically runs on a database server. The controller and view
are hosted on a web server or servlet container. In some scenarios, data can be
stored on and accessed from the same server as the controller and view. This in-
memory storage technique is used in both the JSF-JDBC and Spring-MVC
examples in the course. In addition to volatile, in-memory storage, larger solutions
almost always include persistent storage in databases.

MVC in JSF and Spring

Page 3 of 21

JSF-JDBC MVC

In the previous tutorial, the JSF-JDBC application used an MVC architecture to
access the database, process the view, and render output back to the browser. The
diagram shows the components of the application that we coded and deployed.
Recall that there was a controller bean for each of the CRUD operations. The
Person bean was used to temporarily store data entered by the user or data selected
from the database. Therefore, the Person bean is a form of model in MVC. This is
another example of an alternative implementation of MVC architecture.

MVC in JSF and Spring

Page 4 of 21

Spring-MVC

Java EE is a multifaceted and extremely powerful platform for developing
enterprise and web applications. Large, multi-tiered software systems can be
constructed with a set of modular components. However, as with any highly
capable and intricate solution, Java EE comes at the price of complexity. Many
improvements in the platform have been implemented with each new release. Most
of the advances were designed not only to increase platform capabilities but to also
reduce difficulty for the developer.

J2EE, an early predecessor to the current version of the enterprise platform, was
particularly well known for complicated approaches. In response to the sub-
optimal methods employed by J2EE, a number of frameworks were developed and
introduced by members of the Java community.

As mentioned in previous tutorials, a framework provides an abstraction of its
underlying target technology with the purpose of simplifying use of that

MVC in JSF and Spring

Page 5 of 21

technology. The Spring framework, maintained by Pivotal Software as of 2014, is
designed to make coding with Java’s enterprise software easier and more efficient.
Most, if not all, of the complexity issues associated with J2EE have since been
addressed in the more recent versions of enterprise edition. A diagram of Spring-
MVC is shown.

Many of the enhancements to Java EE have resulted from the positive
contributions of framework developers. For instance, JSF 2.2 Faces Flow (an EE
enhancement), was developed by Oracle for Java EE in response to the framework
community’s release of flow solutions such as ADF Task Flow, Apache MyFaces,
and Spring Web Flow. Spring-MVC is a popular community framework solution
that provides built-in controller flexibility.

MVC in JSF and Spring

Page 6 of 21

Developing the Spring-MVC Web Application

In NetBeans, create a new project and select Java Web | Web Application.

MVC in JSF and Spring

Page 7 of 21

Name the project Spring-MVC and make the appropriate location and folder
settings.

Choose WildFly Server 4 and Java EE 7. Select Next (not Finish).

Select the Spring Web MVC framework and the latest version of Spring 4 under
the Libraries tab. Retain defaults under the Configuration tab. NetBeans may
present a warning message saying that Spring cannot be found while it is attempts
to locate the library files.

MVC in JSF and Spring

Page 8 of 21

Note: Spring Web MVC should appear in the frameworks list for the NetBeans EE
installations. However, if you do not see Spring Web MVC in the list, navigate to
Tools | Plugins | Available Plugins and select Spring to install the required
libraries.

Select Finish.

MVC in JSF and Spring

Page 9 of 21

View the project structure in the Project window.

We need to make a number of changes and additions to the project. Start by
deleting redirect.jsp since it will not be used. Rename index.jsp to index-view.jsp
and code the following.

MVC in JSF and Spring

Page 10 of 21

For applicationContext.xml, the comments can be removed and the format
improved as follows. However, these changes are not required.

MVC in JSF and Spring

Page 11 of 21

Change the name of dispatcher-servlet.xml to mvc-dispatcher-servlet.xml and code
the following.

MVC in JSF and Spring

Page 12 of 21

Make the following changes to web.xml.

MVC in JSF and Spring

Page 13 of 21

Add the resources and css folders as shown.

MVC in JSF and Spring

Page 14 of 21

Add the file spring-mvc.css to the css folder and code it as shown.

Add the HelloWorldController.java (HWC) class file to the com.mysite package
by R-clicking Spring-MVC | New | Java Class. Add it to the com.mysite package.
See previous tutorials for help with adding Java class files if necessary. Code the
file as shown.

MVC in JSF and Spring

Page 15 of 21

Add the GoodbyeWorldController.java (GWC) class file to the com.mysite
package by R-clicking Spring-MVC | New | Java Class. Add it to the com.mysite
package. Notice the fundamental (and minor) differences between HWC and GWC
are lines 10 and 14 which are discussed below.

Your project structure should now look like the following.

MVC in JSF and Spring

Page 16 of 21

Start WildFly by clicking the start button in the output window or R-clicking
WildFly in the Services window and selecting Start. Monitor the WildFly startup
progress in the WildFly output window. After WildFly has FULLY started, R-click
Spring-MVC in the Project window and select Build to build the project.

Note: it is usually a good idea to Clean and Build a project. However, that action
may return an error if attempting before any builds because NetBeans can find
nothing to clean. Also, there are times when it can be helpful to undeploy
(Remove) the application from within WildFly. That can be accomplished by
opening WildFly Admin at localhost:9990 and selecting Runtime | Manage
Deployments. Recall that WildFly Admin can also be accessed in NetBeans via
Services Window | Servers | R-click WildFly | View Admin Console.

MVC in JSF and Spring

Page 17 of 21

After a successful build, R-click the project in NetBeans and select Deploy. After a
successful deployment, we are aready to run the application. Running the
application is a little different from previous tutorials. Instead of selecting the
project or file and selecting R-click | Run, we need to supply the project URL
including the @RequestMapping specified in the controller. Notice that url-hello is
the request mapping on line 10 of HWC. Therefore, url-hello is appended to the
application name to access the application in the address box as shown.

This is the output of index-view.jsp when accessed via HWC.

MVC in JSF and Spring

Page 18 of 21

This is the output of index-view.jsp when accessed via GWC.

Code Review

In addtion to the customary controller used by all MVC solutions, Spring MVC
also uses an additional component known as a front controller. Notice the front
controller as shown in the diagram. It can service more than one controller which
we use in our example. Note: the database server and persistent storage are shown
for completeness but are not implemented in the code example. The front
controller routes requests to either the HelloWorldController.java (HWC) or
GoodbyeWorldController.java (GWC). The particular route directed by the front
controller is specified by the @RequestMapping settings in each controller. Line
10 of both HWC and GWC designate the controller mapping used to access each
controller.

MVC in JSF and Spring

Page 19 of 21

The front controller in our example is provided by Spring’s DispatcherServlet
which is specified on lines 10-21 of web.xml. On those lines the name of the
dispatcher is indicated (lines 11 and 19) and the url-pattern is indentified. Since a
forward slash “/” is used for the url-pattern, this means that all requests coming in
will be routed to the dispatcher (front controller). If we wanted to limit the routing
to only files ending with the .req extention, we could use “*.req” for the url-
pattern.

Notice that line 25 in web.xml specifies the location of the dispatcher context
configuration as mvc-dispatcher-servlet.xml. On line 14 of that file the context is
listed as the package com.mysite which is the location of our controllers HWC and
GWC. The bean on lines 16-24 in mvc-dispatcher-servlet.xml is a Spring
InternalResourceViewResolver component. It specifies a view resolution prefix
and suffix that will be added to a view returned by a controller.

MVC in JSF and Spring

Page 20 of 21

Let’s look at a view resolution example. On line 17 of HWC and GWC a view by
the name “index-view’ is returned. That name maps to the file index-view.jsp by
lines 18-23 of mvc-dispatcher-servlet.xml. Adding the prefix and suffix as
specified produces /WEB-INF/jsp/index-view.jsp.

To reiterate, the front controller is provided by Spring and is the component
DispatcherServlet per line 13 of web.xml. All HTTP requests and responses are
handled by the front controller determined by the forward slash “/” on line 20 of
web.xml. The controllers HWC and GWC exist in the context listed on line 14 of
mvc-dispatcher-servlet.xml which is com.mysite.

To complete the discussion of mvc-dispatcher-servlet.xml, the lines 9-10 and 26-
27 are required so views managed by DispatcherServlet can recognize resources
under the resources directory. Notice that line 8 of index-view.xml accesses the
spring-mvc.css stored in the resources directory tree.

On line 9 of HWC the @Controller annotation specifies that the bean is a
controller. As mentioned earlier, on line 10 the @RequestMapping is used to
determine the URL appendix that will be used to access the controller. The name is
arbitrary. The mapping “url-hello” is used to access HWC and “url-goodbye” is
used to access GWC.

Line 13 of the controllers specifies that the controller methods sayHello and
sayGoodbye will respond to GET requests types. If the method is not specified, all
HTTP request types (GET, PUT, POST, etc.) will be processed.

The sayHello and sayGoodbye methods accept a ModelMap argument when called
by the front controller. A Spring ModelMap data type is used to store model data
when working with user interfaces. Lines 15 and 16 invoke the addAttribute
method of the model to add the name of the attribute followed by its value. The
controllers delegate response rendering to the front controller. The controllers also
pass model data to the front controller which makes it available to the view. The
view name returned to the front controller is specified on line 17 as index-view.

After receiving a delegate response from either HWC or GWC, the front controller
routes the traffic to the index-view per the return statement on line 17 of both
controllers. Lines 16 and 17 of index-view.jsp access the message attributes of the

MVC in JSF and Spring

Page 21 of 21

model and output the messages that were set in the respective controller. Notice in
the architectural diagram that the Model Map is in-memory storage managed by
the servlet container.

That concludes our discussion of MVC and specific MVC implementations. To
enhance understanding of the Spring-MVC example, I recommend that you review
the material and practice modifications with it until the architecture and code
become clear. Considerable time and effort investments will likely be required
unless you have a significant amount of software development experience.

