A. gross structure of skeletal muscle

- skeletal muscle cells/fibers run length of muscle
- c.t. holds fibers together and attach them to bones
- nerves and blood vessels travel through c.t. layers

Belly

Origin insertion

1. c.t. components in muscle
 a. endomysium = surrounds each cell
 - reticular fibers

 b. perimysium = surrounds a group of cells (fascicle)
 - fibrous c.t.

 c. epimysium = surround entire muscle
 - dense irregular c.t.
 - may be continuous with fascia
2. attachments

 a. direct - fascicles appear to attach directly to bone

 b. indirect - tendon attaches muscle to bones

 tendon - cord of dense fibrous regular c.t.
 aponeurosis - sheet of dense fibrous irregular c.t.

B. histological structure

1. sarcolemma - plasma membrane

 a. motor end plate - part of neuromuscular junction
 highly folded
 contains receptors for the neurotransmitter acetylcholine

 b. t-tubules - invaginations of the sarcolemma
 adjacent to terminal cisternae of sarcoplasmic reticulum
 carry depolarization to interior of cell
 t-tubule membrane contains voltage-sensitive proteins called DHP
 receptors
 cause release of Ca from sarcoplasmic reticulum
2. sarcoplasmic reticulum (SR) - modified smooth endoplasmic reticulum
 interconnecting tubules surround myofibrils
 store Ca2+
 terminal cisternae line up near ends of sarcomeres
 SR membrane contains Ca channels attached to and controlled by the
 DHP receptors

3. myofibril - cylindrical bundle of myofilaments (proteins) arranged in a specific
 pattern

 sarcomere - segment of myofibril

 myofilament = small bundle made of contractile and regulatory proteins

 thick - myosin

 thin - actin + troponin complex + tropomyosin

NOTE: the sarcolemma surrounds (is outside of) the sarcoplasmic
reticulum (SR), and the SR surrounds the myofibrils
C. sarcomere structure

1. components
 a. thin filaments
 b. thick filaments
 c. titin

2. alignment and striations
 Z disc - ends of sarcomere
 I zone - thin filaments only at both ends of A zone
 A zone - thick and thin filaments
 H zone - region in center of A zone containing thick filaments only
 M line - middle of H zone
D. types of skeletal muscle cell

most muscles contain all three types
proportions differ among muscles

1. red slow twitch
 - high myoglobin content
 - many mitochondria and capillaries
 - contract slowly
 - aerobic metabolism
 - fatigue resistant
 - found in postural muscles

2. white fast twitch
 - little myoglobin
 - few mitochondria or capillaries
 - contract rapidly
 - anaerobic metabolism
 - abundant glycogen stores
 - fatigue quickly
 - powerful - larger diameter

3. intermediate fast twitch
 - myoglobin and mitochondria
 - contract quickly
 - aerobic metabolism
 - fatigue resistant

E. skeletal muscle contraction and relaxation

calcium ions bind to troponin
troponon changes shape
tropomyosin moves
binding sites on actin are exposed
myosin heads bind to sites
myosin heads swivel towards center of sarcomere (power stroke)
myosin head releases actin
myosin heads reposition themselves - powered by ATP
sarcolemma and t-tubules repolarize
DHP receptors close Ca release channels
pump in membrane of SR uses ATP to move Ca back into SR

F. changes in skeletal muscle

1. atrophy - decrease in cell diameter
2. hypertrophy - increase in cell diameter
3. new muscle cells may be formed from satellite cells

G. cardiac muscle

located in wall of heart
function is to create pressure that pushes blood through the blood vessels
cells branch and interconnect
one or two nuclei; central
use aerobic metabolism to make ATP
fatigue resistant
fibers joined end to end at intercalated discs
gap junctions
desmosomes
fascia adherens
control
intrinsic - autorhythmic cells generate impulses
extrinsic - ANS controls rate

H. smooth muscle

located in organs of the respiratory, digestive, urinary and reproductive systems;
the skin; the eye; the walls of blood vessels
function is to move material through an organ, to control the diameter of an organ, or to move another body part
short, spindle-shaped cells
one central nucleus
myofilaments not lined up - no striations
no t-tubules
organized into sheets: longitudinal, circular, or oblique

generate alternate waves of contraction and relaxation called peristalsis
control:
 no innervation
 single-unit innervation
 multiunit innervation