3. Thrombocytes (Platelets)

small, irregular shape cell fragments

2-4 µm diameter

usually 250,000 – 500,000/mm³

no gender differences

short life span: ~10 days

Formation

formed in marrow, lungs and spleen by fragmentation of large cells (=megakaryocyte)

their production is controlled by thrombopoietin

play important role in hemostasis and blood clotting

Hemostasis

stoppage of blood flow

include:

- **vascular spasm** reduces blood loss
- **platelet plug** 1-5 seconds after injury
 platelets become sticky

<table>
<thead>
<tr>
<th>platelets swell</th>
<th>develop spiky processes</th>
<th>become sticky → adhere tenaciously</th>
<th>degranulate → release serotonin & thromboxane</th>
<th>→ enhance vascular spasm</th>
</tr>
</thead>
<tbody>
<tr>
<td>aggregating agens attract more platelets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

prostaglandins may be involved
Blood Clotting

if injury is extensive clotting cascade is initiated

mechanism must be rapid to stop bleeding

\[\rightarrow \text{involve over 30 different chemicals} \]

\[\rightarrow \text{each is activated in a rapid sequence} = \text{cascade (positive feedback)} \]

1. trigger: rough spot in lining of blood vessel
 slow blood flow
 (also, bedridden)

2. clumps of platelets adhere to site (1-2sec)

3. platelets release serotonin and thromboxane
 \[\rightarrow \text{constricts blood vessels at site of injury} \]

4. platelets and damaged tissues release chemical
 (=thromboplastin, = prothrombin activator)

5. prothrombin (an inactive albumin)
 \[\rightarrow \text{becomes thrombin} \]

6. thrombin converts fibrinogen to fibrin
 (fibrinogen – soluble protein)
 (fibrin – insoluble protein)

 fibrin is a protein forming fine threads that tangle together forming a clot

clot retraction

30-60 minutes

draws edges of clot together

fibrinolysis

\[= \text{clot dissolution} \]

\[\text{occurs continuously} \]

\[\text{plasmins & fibrolysin} = \text{clot busters} \]

Thrombocyte Disorders

1. **Spontaneous Clotting**

 body has mechanism that prevent spontaneous clotting without vessel damage:
- normal lining of vessels is smooth
 → platelets do not adhere

- blood also contains antithrombins
 → inactivate thrombin
 eg. heparin (a natural blood constituent)

sometimes clots are triggered by internal factors

two conditions favor clots:
 1. rough spots on blood vessels
 atherosclerosis may trigger clotting

 2. abnormally slow flow of blood
 bedridden or immobilized patients

these may be caused by:
 atherosclerosis
 severe burns
 inflammation
 slow flow

thrombus – a fixed persistent clot
embolism – a traveling clot

2. Bleeding Disorders (=Hemophilias)
 inability of blood to clot in normal amount of time
 may be caused by
 decreased # of platelets
 liver disease
 inability to form various clotting factors

prothrombin and fibrinogen are produced in liver
require vitamin K (absorbed from intestine)
vitamin K requires bile to be digested and absorbed

if bile ducts become obstructed results in vitamin K deficiency
 → liver can't produce prothrombin at normal rate

 eg. factor VII
 comprises 83% of cases
 eg. factor X
 a sex linked condition