Synopsis of Phylum Mollusca (Molluscs)

Identifying Characteristics of Phylum:
- second largest phylum of animals in terms of number of known species
- most versatile body plan of all animals
- triploblastic with true coelom (eucoelomate); protostome
- bilateral symmetry; some with secondary asymmetry
- soft, usually unsegmented body consisting of head, foot and visceral mass
- body usually enclosed by thin fleshy mantle
- mantle usually secretes hard external shell
- complete digestive tract, many with a radula, a rasping or scraping feeding organ, stomach, digestive glands, crystalline style, intestine
- respiratory system of gills in aquatic forms or "lung"-like chamber in terrestrial forms
- most with open circulatory system; body cavity (coelom) a haemocoel while cephalopods have a closed circulatory system
- CNS is a ring of ganglia in head area with paired nerves and ganglia extending to other parts of the body
- usually 1 pair of nephridia (=metanephridia) often called kidneys (not really true kidneys)
- marine forms with characteristic trochophore larva; freshwater bivalves with glochidia larva

Class: Polyplacophora (Chitons)
- fairly sedentary; may move short distances to feed
- head and cephalic sensory organs reduced
- shell contains 8 overlapping plates on dorsal surface; can roll up like pill bugs/armadillo
- most feed using radula to scrape algae from surface
- mantle forms a girdle around margins of plates
- broad ventral foot attaches firmly to substrate
- gills suspended in mantle cavity along sides of thick
- flat muscular foot

Class: Scaphopoda (Tusk Shells or Tooth Shells)
- single tubular shell open at both ends
- mantle wraps around viscera and fuses to form tube
- feeds mainly on detritus and protozoa caught by cilia on foot or using captacula
- radula carries food to gizzard for crushing

Class: Bivalvia (Clams)
- shell is laterally compressed; 2 valves (right & left); consists of 3 layers; periostracum, prismatic layer, nacreous layer
- “bulging” part of shell on dorsal side near hinge = umbo
- shell held together dorsally by hinge and adductor muscles extending between shells
- shell is secreted by mantle; their mantle can also produce “pearls”
- posterior portions of mantle come together to form incumbent and excurrent siphons
- most bivalves are filter feeders: gills are used to filter food out of water
- in stomach, food is sorted; a gelatinous rod (=crystalline style) spins slowly (by cilia) & dissolves to release digestive enzymes
- 3 chambered heart wraps around intestine in pericardial cavity on dorsal side of body
- freshwater bivalves have internal fertilization; gills become brood chambers; produce bivalved glochidia larvae

This is NOT “what’s on the test”; this is a summary of the major points from lab and lectures; the lecture & lab notes are the sources of exam questions
Class: Gastropoda (Snails)
- means “belly foot”
- largest and most successful class of molluscs
- unlike clams, snails and slugs have a distinct **head** with brain, sense organs (ocelli, tentacles, chemoreceptors) and mouth
- mouth with **radula**
- elongated body with **foot** below for gliding
- **mantle** secretes a single **shell**, often with **operculum**, and forms dorsal surface of animal
- most shells show some degree of **coiling**; in addition to coiling, some animals also show **tortion**
- most gastropods are **herbivores**; use **radula** to scrap algae off of hard surfaces
- simple **gills** are variously modified in aquatic forms
- terrestrial snails have mantle cavity that serves as a “**lung**” with **pneumostome**
- many gastropods perform elaborate courtship ceremonies

Class: Cephalopoda (Octopi and Squid)
- means “head foot”
- most fossil forms had very large heavy shells kept buoyant by gas filled inner chambers; only a few today with large external shell; some have **internal shell** completely enclosed by mantle; some have completely lost shell and mantle encloses and protects animal
- in most cephalopods the **mantle** serves as the animals outer covering
- the surface of the mantle is covered by pigment cells called **chromatophores**
- the “head-foot” is elongated into 8 or 10 **tentacles** (up to 90 in nautilus) and 2 longer **arms**
- mouth at center of arms; contains chitinous **beak** or **jaws**
- all cephalopods are **predators**; use tentacles and arms to capture and handle prey
- **closed circulatory system** → more efficient for gas exchange and transport
- largest **brain** of any invertebrate, generally considered the cleverest of all invertebrates and rival mammals in some ways
- most cephalopods have an **ink sac** for protection
- during mating, before copulation, males often make color displays to compete against rival males
- sperm encased in packets = **spermatophores**

Ecological Impacts of Molluscs
1. important in **food webs** in aquatic ecosystems and even in terrestrial ecosystems
2. snails are major source of calcium for birds
3. oysters are **keystone species** since they tend to form reefs nearshore
4. freshwater bivalves are now the most threatened group of invertebrates in the US
5. Bioinvasives

Human Impacts of Molluscs
1. tusk shells used as money (=wampum) by native Americans
2. as food: oysters, scallops, mussels, octopus, squid
3. precious “stones”
4. ink → **sepiad**
5. cuttlebone from cuttlefish
6. Pharmaceuticals
7. shell collecting
8. pollution control
9. destructive species

This is **NOT** “what’s on the test”; this is a summary of the major points from lab and lectures; the lecture & lab notes are the sources of exam questions